The growing number of AI applications, also for high-stake decisions, increases the interest in Explainable and Interpretable Machine Learning (XI-ML). This trend can be seen both in the increasing number of regulations and strategies for developing trustworthy AI and the growing number of scientific papers dedicated to this topic. To ensure the sustainable development of AI, it is essential to understand the dynamics of the impact of regulation on research papers as well as the impact of scientific discourse on AI-related policies. This paper introduces a novel framework for joint analysis of AI-related policy documents and eXplainable Artificial Intelligence (XAI) research papers. The collected documents are enriched with metadata and interconnections, using various NLP methods combined with a methodology inspired by Institutional Grammar. Based on the information extracted from collected documents, we showcase a series of analyses that help understand interactions, similarities, and differences between documents at different stages of institutionalization. To the best of our knowledge, this is the first work to use automatic language analysis tools to understand the dynamics between XI-ML methods and regulations. We believe that such a system contributes to better cooperation between XAI researchers and AI policymakers.
Artificial intelligence is one of the drivers of modern technological development. The current approach to the development of intelligent systems is data-centric. It has several limitations: it is fundamentally impossible to collect data for modeling complex objects and processes; training neural networks requires huge computational and energy resources; solutions are not explainable. The article discusses an alternative approach to the development of artificial intelligence systems based on human-machine hybridization and their co-evolution.
Numerous government initiatives (e.g. the EU with GDPR) are coming to the conclusion that the increasing complexity of modern software systems must be contrasted with some Rights to Explanation and metrics for the Impact Assessment of these tools, that allow humans to understand and oversee the output of Automated Decision Making systems. Explainable AI was born as a pathway to allow humans to explore and understand the inner working of complex systems. But establishing what is an explanation and objectively evaluating explainability, are not trivial tasks. With this paper, we present a new model-agnostic metric to measure the Degree of eXplainability of (correct) information in an objective way, exploiting a specific theoretical model from Ordinary Language Philosophy called the Achinstein's Theory of Explanations, implemented with an algorithm relying on deep language models for knowledge graph extraction and information retrieval. In order to understand whether this metric is actually behaving as explainability is expected to, we have devised a few experiments and user-studies involving more than 160 participants evaluating two realistic AI-based systems for healthcare and finance using famous AI technology including Artificial Neural Networks and TreeSHAP. The results we obtained are very encouraging, suggesting that our proposed metric for measuring the Degree of eXplainability is robust on several scenarios and it can be eventually exploited for a lawful Impact Assessment of an Automated Decision Making system.
The past decade has seen a substantial rise in the amount of mis- and disinformation online, from targeted disinformation campaigns to influence politics, to the unintentional spreading of misinformation about public health. This development has spurred research in the area of automatic fact checking, from approaches to detect check-worthy claims and determining the stance of tweets towards claims, to methods to determine the veracity of claims given evidence documents. These automatic methods are often content-based, using natural language processing methods, which in turn utilise deep neural networks to learn higher-order features from text in order to make predictions. As deep neural networks are black-box models, their inner workings cannot be easily explained. At the same time, it is desirable to explain how they arrive at certain decisions, especially if they are to be used for decision making. While this has been known for some time, the issues this raises have been exacerbated by models increasing in size, and by EU legislation requiring models to be used for decision making to provide explanations, and, very recently, by legislation requiring online platforms operating in the EU to provide transparent reporting on their services. Despite this, current solutions for explainability are still lacking in the area of fact checking. This thesis presents my research on automatic fact checking, including claim check-worthiness detection, stance detection and veracity prediction. Its contributions go beyond fact checking, with the thesis proposing more general machine learning solutions for natural language processing in the area of learning with limited labelled data. Finally, the thesis presents some first solutions for explainable fact checking.
As the concept and implementation of cutting-edge technologies like artificial intelligence and machine learning has become relevant, academics, researchers and information professionals involve research in this area. The objective of this systematic literature review is to provide a synthesis of empirical studies exploring application of artificial intelligence and machine learning in libraries. To achieve the objectives of the study, a systematic literature review was conducted based on the original guidelines proposed by Kitchenham et al. (2009). Data was collected from Web of Science, Scopus, LISA and LISTA databases. Following the rigorous/ established selection process, a total of thirty-two articles were finally selected, reviewed and analyzed to summarize on the application of AI and ML domain and techniques which are most often used in libraries. Findings show that the current state of the AI and ML research that is relevant with the LIS domain mainly focuses on theoretical works. However, some researchers also emphasized on implementation projects or case studies. This study will provide a panoramic view of AI and ML in libraries for researchers, practitioners and educators for furthering the more technology-oriented approaches, and anticipating future innovation pathways.
The increasing availability of large collections of electronic health record (EHR) data and unprecedented technical advances in deep learning (DL) have sparked a surge of research interest in developing DL based clinical decision support systems for diagnosis, prognosis, and treatment. Despite the recognition of the value of deep learning in healthcare, impediments to further adoption in real healthcare settings remain due to the black-box nature of DL. Therefore, there is an emerging need for interpretable DL, which allows end users to evaluate the model decision making to know whether to accept or reject predictions and recommendations before an action is taken. In this review, we focus on the interpretability of the DL models in healthcare. We start by introducing the methods for interpretability in depth and comprehensively as a methodological reference for future researchers or clinical practitioners in this field. Besides the methods' details, we also include a discussion of advantages and disadvantages of these methods and which scenarios each of them is suitable for, so that interested readers can know how to compare and choose among them for use. Moreover, we discuss how these methods, originally developed for solving general-domain problems, have been adapted and applied to healthcare problems and how they can help physicians better understand these data-driven technologies. Overall, we hope this survey can help researchers and practitioners in both artificial intelligence (AI) and clinical fields understand what methods we have for enhancing the interpretability of their DL models and choose the optimal one accordingly.
The new characteristics of AI technology have brought new challenges to the research and development of AI systems. AI technology has benefited humans, but if improperly developed, it will harm humans. At present, there is no systematic interdisciplinary approach to effectively deal with these new challenges. This paper analyzes the new challenges faced by AI systems and further elaborates the "Human-Centered AI" (HCAI) approach we proposed in 2019. In order to enable the implementation of the HCAI approach, we systematically propose an emerging interdisciplinary domain of "Human-AI Interaction" (HAII), and define the objective, methodology, and scope. Based on literature review and analyses, this paper summarizes the main areas of the HAII research and application as well as puts forward the future research agenda for HAII. Finally, the paper provides strategic recommendations for future implementation of the HCAII approach and HAII work.
In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.
Recently, artificial intelligence, especially machine learning has demonstrated remarkable performances in many tasks, from image processing to natural language processing, especially with the advent of deep learning. Along with research progress, machine learning has encroached into many different fields and disciplines. Some of them, such as the medical field, require high level of accountability, and thus transparency, which means we need to be able to explain machine decisions, predictions and justify their reliability. This requires greater interpretability, which often means we need to understand the mechanism underlying the algorithms. Unfortunately, the black-box nature of the deep learning is still unresolved, and many machine decisions are still poorly understood. We provide a review on interpretabilities suggested by different research works and categorize them. Also, within an exhaustive list of papers, we find that interpretability is often algorithm-centric, with few human-subject tests to verify whether proposed methods indeed enhance human interpretability. We explore further into interpretability in the medical field, illustrating the complexity of interpretability issue.
There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.
The question addressed in this paper is: If we present to a user an AI system that explains how it works, how do we know whether the explanation works and the user has achieved a pragmatic understanding of the AI? In other words, how do we know that an explanainable AI system (XAI) is any good? Our focus is on the key concepts of measurement. We discuss specific methods for evaluating: (1) the goodness of explanations, (2) whether users are satisfied by explanations, (3) how well users understand the AI systems, (4) how curiosity motivates the search for explanations, (5) whether the user's trust and reliance on the AI are appropriate, and finally, (6) how the human-XAI work system performs. The recommendations we present derive from our integration of extensive research literatures and our own psychometric evaluations.