亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In Federated Learning (FL), a number of clients or devices collaborate to train a model without sharing their data. Models are optimized locally at each client and further communicated to a central hub for aggregation. While FL is an appealing decentralized training paradigm, heterogeneity among data from different clients can cause the local optimization to drift away from the global objective. In order to estimate and therefore remove this drift, variance reduction techniques have been incorporated into FL optimization recently. However, these approaches inaccurately estimate the clients' drift and ultimately fail to remove it properly. In this work, we propose an adaptive algorithm that accurately estimates drift across clients. In comparison to previous works, our approach necessitates less storage and communication bandwidth, as well as lower compute costs. Additionally, our proposed methodology induces stability by constraining the norm of estimates for client drift, making it more practical for large scale FL. Experimental findings demonstrate that the proposed algorithm converges significantly faster and achieves higher accuracy than the baselines across various FL benchmarks.

相關內容

Masked Image Modeling (MIM) methods, like Masked Autoencoders (MAE), efficiently learn a rich representation of the input. However, for adapting to downstream tasks, they require a sufficient amount of labeled data since their rich features code not only objects but also less relevant image background. In contrast, Instance Discrimination (ID) methods focus on objects. In this work, we study how to combine the efficiency and scalability of MIM with the ability of ID to perform downstream classification in the absence of large amounts of labeled data. To this end, we introduce Masked Autoencoder Contrastive Tuning (MAE-CT), a sequential approach that utilizes the implicit clustering of the Nearest Neighbor Contrastive Learning (NNCLR) objective to induce abstraction in the topmost layers of a pre-trained MAE. MAE-CT tunes the rich features such that they form semantic clusters of objects without using any labels. Notably, MAE-CT does not rely on hand-crafted augmentations and frequently achieves its best performances while using only minimal augmentations (crop & flip). Further, MAE-CT is compute efficient as it requires at most 10% overhead compared to MAE re-training. Applied to large and huge Vision Transformer (ViT) models, MAE-CT excels over previous self-supervised methods trained on ImageNet in linear probing, k-NN and low-shot classification accuracy as well as in unsupervised clustering accuracy. With ViT-H/16 MAE-CT achieves a new state-of-the-art in linear probing of 82.2%.

Large Language Models (LLMs), primarily trained on text-based datasets, exhibit exceptional proficiencies in understanding and executing complex linguistic instructions via text outputs. However, they falter when requests to generate non-text ones. Concurrently, modality conversion models, such as text-to-image, despite generating high-quality images, suffer from a lack of extensive textual pretraining. As a result, these models are only capable of accommodating specific image descriptions rather than comprehending more complex instructions. To bridge this gap, we propose a novel approach, \methodname, from a modality conversion perspective that evolves a text-based LLM into a multi-modal one. We specifically employ a minimal dataset to instruct LLMs to recognize the intended output modality as directed by the instructions. Consequently, the adapted LLM can effectively summon various off-the-shelf modality conversion models from the model zoos to generate non-text responses. This circumvents the necessity for complicated pretraining that typically requires immense quantities of paired multi-modal data, while simultaneously inheriting the extensive knowledge of LLMs and the ability of high-quality generative models. To evaluate and compare the adapted multi-modal LLM with its traditional counterparts, we have constructed a multi-modal instruction benchmark that solicits diverse modality outputs. The experiment results reveal that, with minimal training, LLMs can be conveniently adapted to comprehend requests for non-text responses, thus achieving higher flexibility in multi-modal scenarios. Code and data will be made available at //github.com/xinke-wang/SwitchGPT.

Artificial Intelligence (AI) is rapidly transforming society, creating an urgent need to ensure its positive impact. In this article, we take a positive design approach towards this issue, viewing it as a matter of designing AI systems that actively support human wellbeing. However, designing wellbeing-aligned AI systems is difficult. This article adopts a cybernetic perspective to identify twelve key challenges across two categories: lack of knowledge and lack of motivation. Knowledge barriers include challenges in conceptualizing, measuring, and optimizing for wellbeing, then designing appropriate AI actions. Motivation barriers include misaligned incentives, financial and publicity risks, and a lack of data access preventing (third-party) research on wellbeing. To address these challenges we have captured our key takeaways in a research agenda related to 1) advancing the scientific understanding of the impact of AI systems on wellbeing, and 2) guiding design actions on how AI systems might be intentionally designed to promote and sustain wellbeing.

Denoising diffusion probabilistic models (DDPMs) have shown promising performance for speech synthesis. However, a large number of iterative steps are required to achieve high sample quality, which restricts the inference speed. Maintaining sample quality while increasing sampling speed has become a challenging task. In this paper, we propose a "Co"nsistency "Mo"del-based "Speech" synthesis method, CoMoSpeech, which achieve speech synthesis through a single diffusion sampling step while achieving high audio quality. The consistency constraint is applied to distill a consistency model from a well-designed diffusion-based teacher model, which ultimately yields superior performances in the distilled CoMoSpeech. Our experiments show that by generating audio recordings by a single sampling step, the CoMoSpeech achieves an inference speed more than 150 times faster than real-time on a single NVIDIA A100 GPU, which is comparable to FastSpeech2, making diffusion-sampling based speech synthesis truly practical. Meanwhile, objective and subjective evaluations on text-to-speech and singing voice synthesis show that the proposed teacher models yield the best audio quality, and the one-step sampling based CoMoSpeech achieves the best inference speed with better or comparable audio quality to other conventional multi-step diffusion model baselines. Audio samples are available at //comospeech.github.io/.

Hyperparameter optimization (HPO) is important to leverage the full potential of machine learning (ML). In practice, users are often interested in multi-objective (MO) problems, i.e., optimizing potentially conflicting objectives, like accuracy and energy consumption. To tackle this, the vast majority of MO-ML algorithms return a Pareto front of non-dominated machine learning models to the user. Optimizing the hyperparameters of such algorithms is non-trivial as evaluating a hyperparameter configuration entails evaluating the quality of the resulting Pareto front. In literature, there are known indicators that assess the quality of a Pareto front (e.g., hypervolume, R2) by quantifying different properties (e.g., volume, proximity to a reference point). However, choosing the indicator that leads to the desired Pareto front might be a hard task for a user. In this paper, we propose a human-centered interactive HPO approach tailored towards multi-objective ML leveraging preference learning to extract desiderata from users that guide the optimization. Instead of relying on the user guessing the most suitable indicator for their needs, our approach automatically learns an appropriate indicator. Concretely, we leverage pairwise comparisons of distinct Pareto fronts to learn such an appropriate quality indicator. Then, we optimize the hyperparameters of the underlying MO-ML algorithm towards this learned indicator using a state-of-the-art HPO approach. In an experimental study targeting the environmental impact of ML, we demonstrate that our approach leads to substantially better Pareto fronts compared to optimizing based on a wrong indicator pre-selected by the user, and performs comparable in the case of an advanced user knowing which indicator to pick.

Anisotropic diffusion processes with a diffusion tensor are important in image analysis, physics, and engineering. However, their numerical approximation has a strong impact on dissipative artefacts and deviations from rotation invariance. In this work, we study a large family of finite difference discretisations on a 3 x 3 stencil. We derive it by splitting 2-D anisotropic diffusion into four 1-D diffusions. The resulting stencil class involves one free parameter and covers a wide range of existing discretisations. It comprises the full stencil family of Weickert et al. (2013) and shows that their two parameters contain redundancy. Furthermore, we establish a bound on the spectral norm of the matrix corresponding to the stencil. This gives time step size limits that guarantee stability of an explicit scheme in the Euclidean norm. Our directional splitting also allows a very natural translation of the explicit scheme into ResNet blocks. Employing neural network libraries enables simple and highly efficient parallel implementations on GPUs.

With recent advances in Generative AI, it is becoming easier to automatically manipulate 3D models. However, current methods tend to apply edits to models globally, which risks compromising the intended functionality of the 3D model when fabricated in the physical world. For example, modifying functional segments in 3D models, such as the base of a vase, could break the original functionality of the model, thus causing the vase to fall over. We introduce a method for automatically segmenting 3D models into functional and aesthetic elements. This method allows users to selectively modify aesthetic segments of 3D models, without affecting the functional segments. To develop this method we first create a taxonomy of functionality in 3D models by qualitatively analyzing 1000 models sourced from a popular 3D printing repository, Thingiverse. With this taxonomy, we develop a semi-automatic classification method to decompose 3D models into functional and aesthetic elements. We propose a system called Style2Fab that allows users to selectively stylize 3D models without compromising their functionality. We evaluate the effectiveness of our classification method compared to human-annotated data, and demonstrate the utility of Style2Fab with a user study to show that functionality-aware segmentation helps preserve model functionality.

Point Cloud Registration (PCR) is a critical and challenging task in computer vision. One of the primary difficulties in PCR is identifying salient and meaningful points that exhibit consistent semantic and geometric properties across different scans. Previous methods have encountered challenges with ambiguous matching due to the similarity among patch blocks throughout the entire point cloud and the lack of consideration for efficient global geometric consistency. To address these issues, we propose a new framework that includes several novel techniques. Firstly, we introduce a semantic-aware geometric encoder that combines object-level and patch-level semantic information. This encoder significantly improves registration recall by reducing ambiguity in patch-level superpoint matching. Additionally, we incorporate a prior knowledge approach that utilizes an intrinsic shape signature to identify salient points. This enables us to extract the most salient super points and meaningful dense points in the scene. Secondly, we introduce an innovative transformer that encodes High-Order (HO) geometric features. These features are crucial for identifying salient points within initial overlap regions while considering global high-order geometric consistency. To optimize this high-order transformer further, we introduce an anchor node selection strategy. By encoding inter-frame triangle or polyhedron consistency features based on these anchor nodes, we can effectively learn high-order geometric features of salient super points. These high-order features are then propagated to dense points and utilized by a Sinkhorn matching module to identify key correspondences for successful registration. In our experiments conducted on well-known datasets such as 3DMatch/3DLoMatch and KITTI, our approach has shown promising results, highlighting the effectiveness of our novel method.

The enforcement of the GDPR led to the widespread adoption of consent notices, colloquially known as cookie banners. Studies have shown that many website operators do not comply with the law and track users prior to any interaction with the consent notice, or attempt to trick users into giving consent through dark patterns. Previous research has relied on manually curated filter lists or automated detection methods limited to a subset of websites, making research on GDPR compliance of consent notices tedious or limited. We present \emph{cookiescanner}, an automated scanning tool that detects and extracts consent notices via various methods and checks if they offer a decline option or use color diversion. We evaluated cookiescanner on a random sample of the top 10,000 websites listed by Tranco. We found that manually curated filter lists have the highest precision but recall fewer consent notices than our keyword-based methods. Our BERT model achieves high precision for English notices, which is in line with previous work, but suffers from low recall due to insufficient candidate extraction. While the automated detection of decline options proved to be challenging due to the dynamic nature of many sites, detecting instances of different colors of the buttons was successful in most cases. Besides systematically evaluating our various detection techniques, we have manually annotated 1,000 websites to provide a ground-truth baseline, which has not existed previously. Furthermore, we release our code and the annotated dataset in the interest of reproducibility and repeatability.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

北京阿比特科技有限公司