亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, deep neural networks (DNNs) have become powerful tools for solving inverse scattering problems. However, the approximation and generalization rates of DNNs for solving these problems remain largely under-explored. In this work, we introduce two types of combined DNNs (uncompressed and compressed) to reconstruct two coefficients in the Helmholtz equation for inverse scattering problems from the scattering data at two different frequencies. An analysis of the approximation and generalization capabilities of the proposed neural networks for simulating the regularized pseudo-inverses of the linearized forward operators in direct scattering problems is provided. The results show that, with sufficient training data and parameters, the proposed neural networks can effectively approximate the inverse process with desirable generalization. Preliminary numerical results show the feasibility of the proposed neural networks for recovering two types of isotropic inhomogeneous media. Furthermore, the trained neural network is capable of reconstructing the isotropic representation of certain types of anisotropic media.

相關內容

神經網絡(Neural Networks)是世界上三個最古老的神經建模學會的檔案期刊:國際神經網絡學會(INNS)、歐洲神經網絡學會(ENNS)和日本神經網絡學會(JNNS)。神經網絡提供了一個論壇,以發展和培育一個國際社會的學者和實踐者感興趣的所有方面的神經網絡和相關方法的計算智能。神經網絡歡迎高質量論文的提交,有助于全面的神經網絡研究,從行為和大腦建模,學習算法,通過數學和計算分析,系統的工程和技術應用,大量使用神經網絡的概念和技術。這一獨特而廣泛的范圍促進了生物和技術研究之間的思想交流,并有助于促進對生物啟發的計算智能感興趣的跨學科社區的發展。因此,神經網絡編委會代表的專家領域包括心理學,神經生物學,計算機科學,工程,數學,物理。該雜志發表文章、信件和評論以及給編輯的信件、社論、時事、軟件調查和專利信息。文章發表在五個部分之一:認知科學,神經科學,學習系統,數學和計算分析、工程和應用。 官網地址:

In recent work it has been shown that determining a feedforward ReLU neural network to within high uniform accuracy from point samples suffers from the curse of dimensionality in terms of the number of samples needed. As a consequence, feedforward ReLU neural networks are of limited use for applications where guaranteed high uniform accuracy is required. We consider the question of whether the sampling complexity can be improved by restricting the specific neural network architecture. To this end, we investigate invertible residual neural networks which are foundational architectures in deep learning and are widely employed in models that power modern generative methods. Our main result shows that the residual neural network architecture and invertibility do not help overcome the complexity barriers encountered with simpler feedforward architectures. Specifically, we demonstrate that the computational complexity of approximating invertible residual neural networks from point samples in the uniform norm suffers from the curse of dimensionality. Similar results are established for invertible convolutional Residual neural networks.

The efficiency of locally generating unitary designs, which capture statistical notions of quantum pseudorandomness, lies at the heart of wide-ranging areas in physics and quantum information technologies. While there are extensive potent methods and results for this problem, the evidently important setting where continuous symmetries or conservation laws (most notably U(1) and SU(d)) are involved is known to present fundamental difficulties. In particular, even the basic question of whether any local symmetric circuit can generate 2-designs efficiently (in time that grows at most polynomially in the system size) remains open with no circuit constructions provably known to do so, despite intensive efforts. In this work, we resolve this long-standing open problem for both U(1) and SU(d) symmetries by explicitly constructing local symmetric quantum circuits which we prove to converge to symmetric unitary 2-designs in polynomial time using a combination of representation theory, graph theory, and Markov chain methods. As a direct application, our constructions can be used to efficiently generate near-optimal random covariant quantum error-correcting codes, confirming a conjecture in [PRX Quantum 3, 020314 (2022)].

Studying the interplay between the geometry of the loss landscape and the optimization trajectories of simple neural networks is a fundamental step for understanding their behavior in more complex settings. This paper reveals the presence of topological obstruction in the loss landscape of shallow ReLU neural networks trained using gradient flow. We discuss how the homogeneous nature of the ReLU activation function constrains the training trajectories to lie on a product of quadric hypersurfaces whose shape depends on the particular initialization of the network's parameters. When the neural network's output is a single scalar, we prove that these quadrics can have multiple connected components, limiting the set of reachable parameters during training. We analytically compute the number of these components and discuss the possibility of mapping one to the other through neuron rescaling and permutation. In this simple setting, we find that the non-connectedness results in a topological obstruction, which, depending on the initialization, can make the global optimum unreachable. We validate this result with numerical experiments.

We extend the finite element interpolated neural network (FEINN) framework from partial differential equations (PDEs) with weak solutions in $H^1$ to PDEs with weak solutions in $H(\textbf{curl})$ or $H(\textbf{div})$. To this end, we consider interpolation trial spaces that satisfy the de Rham Hilbert subcomplex, providing stable and structure-preserving neural network discretisations for a wide variety of PDEs. This approach, coined compatible FEINNs, has been used to accurately approximate the $H(\textbf{curl})$ inner product. We numerically observe that the trained network outperforms finite element solutions by several orders of magnitude for smooth analytical solutions. Furthermore, to showcase the versatility of the method, we demonstrate that compatible FEINNs achieve high accuracy in solving surface PDEs such as the Darcy equation on a sphere. Additionally, the framework can integrate adaptive mesh refinements to effectively solve problems with localised features. We use an adaptive training strategy to train the network on a sequence of progressively adapted meshes. Finally, we compare compatible FEINNs with the adjoint neural network method for solving inverse problems. We consider a one-loop algorithm that trains the neural networks for unknowns and missing parameters using a loss function that includes PDE residual and data misfit terms. The algorithm is applied to identify space-varying physical parameters for the $H(\textbf{curl})$ model problem from partial or noisy observations. We find that compatible FEINNs achieve accuracy and robustness comparable to, if not exceeding, the adjoint method in these scenarios.

This paper presents an approach to joint wireless and computing resource management in slice-enabled metaverse networks, addressing the challenges of inter-slice and intra-slice resource allocation in the presence of in-network computing. We formulate the problem as a mixed-integer nonlinear programming (MINLP) problem and derive an optimal solution using standard optimization techniques. Through extensive simulations, we demonstrate that our proposed method significantly improves system performance by effectively balancing the allocation of radio and computing resources across multiple slices. Our approach outperforms existing benchmarks, particularly in scenarios with high user demand and varying computational tasks.

In this work is considered an elliptic problem, referred to as the Ventcel problem, involvinga second order term on the domain boundary (the Laplace-Beltrami operator). A variationalformulation of the Ventcel problem is studied, leading to a finite element discretization. Thefocus is on the construction of high order curved meshes for the discretization of the physicaldomain and on the definition of the lift operator, which is aimed to transform a functiondefined on the mesh domain into a function defined on the physical one. This lift is definedin a way as to satisfy adapted properties on the boundary, relatively to the trace operator.The Ventcel problem approximation is investigated both in terms of geometrical error and offinite element approximation error. Error estimates are obtained both in terms of the meshorder r $\ge$ 1 and to the finite element degree k $\ge$ 1, whereas such estimates usually have beenconsidered in the isoparametric case so far, involving a single parameter k = r. The numericalexperiments we led, both in dimension 2 and 3, allow us to validate the results obtained andproved on the a priori error estimates depending on the two parameters k and r. A numericalcomparison is made between the errors using the former lift definition and the lift defined inthis work establishing an improvement in the convergence rate of the error in the latter case.

In the present work, strong approximation errors are analyzed for both the spatial semi-discretization and the spatio-temporal fully discretization of stochastic wave equations (SWEs) with cubic polynomial nonlinearities and additive noises. The fully discretization is achieved by the standard Galerkin ffnite element method in space and a novel exponential time integrator combined with the averaged vector ffeld approach. The newly proposed scheme is proved to exactly satisfy a trace formula based on an energy functional. Recovering the convergence rates of the scheme, however, meets essential difffculties, due to the lack of the global monotonicity condition. To overcome this issue, we derive the exponential integrability property of the considered numerical approximations, by the energy functional. Armed with these properties, we obtain the strong convergence rates of the approximations in both spatial and temporal direction. Finally, numerical results are presented to verify the previously theoretical findings.

The success of over-parameterized neural networks trained to near-zero training error has caused great interest in the phenomenon of benign overfitting, where estimators are statistically consistent even though they interpolate noisy training data. While benign overfitting in fixed dimension has been established for some learning methods, current literature suggests that for regression with typical kernel methods and wide neural networks, benign overfitting requires a high-dimensional setting where the dimension grows with the sample size. In this paper, we show that the smoothness of the estimators, and not the dimension, is the key: benign overfitting is possible if and only if the estimator's derivatives are large enough. We generalize existing inconsistency results to non-interpolating models and more kernels to show that benign overfitting with moderate derivatives is impossible in fixed dimension. Conversely, we show that rate-optimal benign overfitting is possible for regression with a sequence of spiky-smooth kernels with large derivatives. Using neural tangent kernels, we translate our results to wide neural networks. We prove that while infinite-width networks do not overfit benignly with the ReLU activation, this can be fixed by adding small high-frequency fluctuations to the activation function. Our experiments verify that such neural networks, while overfitting, can indeed generalize well even on low-dimensional data sets.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司