亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The technique of Reinforcement Learning from Human Feedback (RLHF) is a commonly employed method to improve pre-trained Language Models (LM), enhancing their ability to conform to human preferences. Nevertheless, the current RLHF-based LMs necessitate full retraining each time novel queries or feedback are introduced, which becomes a challenging task because human preferences can vary between different domains or tasks. Retraining LMs poses practical difficulties in many real-world situations due to the significant time and computational resources required, along with concerns related to data privacy. To address this limitation, we propose a new method called Continual Optimal Policy Fitting (COPF), in which we estimate a series of optimal policies using the Monte Carlo method, and then continually fit the policy sequence with the function regularization. COPF involves a single learning phase and doesn't necessitate complex reinforcement learning. Importantly, it shares the capability with RLHF to learn from unlabeled data, making it flexible for continual preference learning. Our experimental results show that COPF outperforms strong Continuous learning (CL) baselines when it comes to consistently aligning with human preferences on different tasks and domains.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

The Parameter-Efficient Fine-Tuning (PEFT) method, which adjusts or introduces fewer trainable parameters to calibrate pre-trained models on downstream tasks, has become a recent research interest. However, existing PEFT methods within the traditional fine-tiuning framework have two main shortcomings: 1) They overlook the explicit association between trainable parameters and downstream task knowledge. 2) They neglect the interaction between the intrinsic task-agnostic knowledge of pre-trained models and the task-specific knowledge in downstream tasks. To address this gap, we propose a novel fine-tuning framework, named GIST, in a plug-and-play manner. Specifically, our framework first introduces a trainable token, called the Gist token, when applying PEFT methods on downstream tasks. This token serves as an aggregator of the task-specific knowledge learned by the PEFT methods and forms an explicit association with downstream knowledge. Furthermore, to facilitate explicit interaction between task-agnostic and task-specific knowledge, we introduce the concept of Knowledge Interaction via a Bidirectional Kullback-Leibler Divergence objective. As a result, PEFT methods within our framework can make the pre-trained model understand downstream tasks more comprehensively by leveraging the knowledge interaction. Extensive experiments demonstrate the universality and scalability of our framework. Notably, on the VTAB-1K benchmark, we employ the Adapter (a prevalent PEFT method) within our GIST framework and achieve a performance boost of 2.25%, with an increase of only 0.8K parameters. The Code will be released.

Temporal Knowledge Graph (TKG) representation learning embeds entities and event types into a continuous low-dimensional vector space by integrating the temporal information, which is essential for downstream tasks, e.g., event prediction and question answering. Existing methods stack multiple graph convolution layers to model the influence of distant entities, leading to the over-smoothing problem. To alleviate the problem, recent studies infuse reinforcement learning to obtain paths that contribute to modeling the influence of distant entities. However, due to the limited number of hops, these studies fail to capture the correlation between entities that are far apart and even unreachable. To this end, we propose GTRL, an entity Group-aware Temporal knowledge graph Representation Learning method. GTRL is the first work that incorporates the entity group modeling to capture the correlation between entities by stacking only a finite number of layers. Specifically, the entity group mapper is proposed to generate entity groups from entities in a learning way. Based on entity groups, the implicit correlation encoder is introduced to capture implicit correlations between any pairwise entity groups. In addition, the hierarchical GCNs are exploited to accomplish the message aggregation and representation updating on the entity group graph and the entity graph. Finally, GRUs are employed to capture the temporal dependency in TKGs. Extensive experiments on three real-world datasets demonstrate that GTRL achieves the state-of-the-art performances on the event prediction task, outperforming the best baseline by an average of 13.44%, 9.65%, 12.15%, and 15.12% in MRR, Hits@1, Hits@3, and Hits@10, respectively.

Self-Supervised Learning (SSL) is a paradigm that leverages unlabeled data for model training. Empirical studies show that SSL can achieve promising performance in distribution shift scenarios, where the downstream and training distributions differ. However, the theoretical understanding of its transferability remains limited. In this paper, we develop a theoretical framework to analyze the transferability of self-supervised contrastive learning, by investigating the impact of data augmentation on it. Our results reveal that the downstream performance of contrastive learning depends largely on the choice of data augmentation. Moreover, we show that contrastive learning fails to learn domain-invariant features, which limits its transferability. Based on these theoretical insights, we propose a novel method called Augmentation-robust Contrastive Learning (ArCL), which guarantees to learn domain-invariant features and can be easily integrated with existing contrastive learning algorithms. We conduct experiments on several datasets and show that ArCL significantly improves the transferability of contrastive learning.

We are introducing SM70, a 70 billion-parameter Large Language Model that is specifically designed for SpassMed's medical devices under the brand name 'JEE1' (pronounced as G1 and means 'Life'). This large language model provides more accurate and safe responses to medical-domain questions. To fine-tune SM70, we used around 800K data entries from the publicly available dataset MedAlpaca. The Llama2 70B open-sourced model served as the foundation for SM70, and we employed the QLoRA technique for fine-tuning. The evaluation is conducted across three benchmark datasets - MEDQA - USMLE, PUBMEDQA, and USMLE - each representing a unique aspect of medical knowledge and reasoning. The performance of SM70 is contrasted with other notable LLMs, including Llama2 70B, Clinical Camel 70 (CC70), GPT 3.5, GPT 4, and Med-Palm, to provide a comparative understanding of its capabilities within the medical domain. Our results indicate that SM70 outperforms several established models in these datasets, showcasing its proficiency in handling a range of medical queries, from fact-based questions derived from PubMed abstracts to complex clinical decision-making scenarios. The robust performance of SM70, particularly in the USMLE and PUBMEDQA datasets, suggests its potential as an effective tool in clinical decision support and medical information retrieval. Despite its promising results, the paper also acknowledges the areas where SM70 lags behind the most advanced model, GPT 4, thereby highlighting the need for further development, especially in tasks demanding extensive medical knowledge and intricate reasoning.

A new method called the Survival Beran-based Neural Importance Model (SurvBeNIM) is proposed. It aims to explain predictions of machine learning survival models, which are in the form of survival or cumulative hazard functions. The main idea behind SurvBeNIM is to extend the Beran estimator by incorporating the importance functions into its kernels and by implementing these importance functions as a set of neural networks which are jointly trained in an end-to-end manner. Two strategies of using and training the whole neural network implementing SurvBeNIM are proposed. The first one explains a single instance, and the neural network is trained for each explained instance. According to the second strategy, the neural network only learns once on all instances from the dataset and on all generated instances. Then the neural network is used to explain any instance in a dataset domain. Various numerical experiments compare the method with different existing explanation methods. A code implementing the proposed method is publicly available.

Irregular repetition slotted Aloha (IRSA) has shown significant advantages as a modern technique for uncoordinated random access with massive number of users due to its capability of achieving theoretically a throughput of $1$ packet per slot. When the receiver has also the multi-packet reception of multi-user (MUD) detection property, by applying successive interference cancellation, IRSA also obtains very low packet loss probabilities at low traffic loads, but is unable in general to achieve a normalized throughput close to the $1$. In this paper, we reconsider the case of IRSA with $k$-MUD receivers and derive the general density evolution equations for the non-asymptotic analysis of the packet loss rate, for arbitrary frame lengths and two variants of the first slot used for transmission. Next, using the potential function, we give new capacity bounds on the capacity of the system, showing the threshold arrival rate for zero decoding error probability. Our numerical results illustrate performance in terms of throughput and average delay for $k$-MUD IRSA with finite memory at the receiver, and also with bounded maximum delay.

Large Language models (LLM) have demonstrated the capability to handle a variety of generative tasks. This paper presents the UniAudio system, which, unlike prior task-specific approaches, leverages LLM techniques to generate multiple types of audio (including speech, sounds, music, and singing) with given input conditions. UniAudio 1) first tokenizes all types of target audio along with other condition modalities, 2) concatenates source-target pair as a single sequence, and 3) performs next-token prediction using LLM. Also, a multi-scale Transformer model is proposed to handle the overly long sequences caused by the residual vector quantization based neural codec in tokenization. Training of UniAudio is scaled up to 165K hours of audio and 1B parameters, based on all generative tasks, aiming to obtain sufficient prior knowledge not only in the intrinsic properties of audio but also the inter-relationship between audio and other modalities. Therefore, the trained UniAudio model has the potential to become a foundation model for universal audio generation: it shows strong capability in all trained tasks and can seamlessly support new audio generation tasks after simple fine-tuning. Experiments demonstrate that UniAudio achieves state-of-the-art or at least competitive results on most of the 11 tasks. Demo and code are released at //github.com/yangdongchao/UniAudio

This paper presents CyberSecEval, a comprehensive benchmark developed to help bolster the cybersecurity of Large Language Models (LLMs) employed as coding assistants. As what we believe to be the most extensive unified cybersecurity safety benchmark to date, CyberSecEval provides a thorough evaluation of LLMs in two crucial security domains: their propensity to generate insecure code and their level of compliance when asked to assist in cyberattacks. Through a case study involving seven models from the Llama 2, Code Llama, and OpenAI GPT large language model families, CyberSecEval effectively pinpointed key cybersecurity risks. More importantly, it offered practical insights for refining these models. A significant observation from the study was the tendency of more advanced models to suggest insecure code, highlighting the critical need for integrating security considerations in the development of sophisticated LLMs. CyberSecEval, with its automated test case generation and evaluation pipeline covers a broad scope and equips LLM designers and researchers with a tool to broadly measure and enhance the cybersecurity safety properties of LLMs, contributing to the development of more secure AI systems.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.

北京阿比特科技有限公司