Code Completion is one of the most used Integrated Development Environment (IDE) features, which affects the everyday life of a software developer. Modern code completion approaches moved from the composition of several static analysis-based contributors to pipelines that involve neural networks. This change allows the proposal of longer code suggestions while maintaining the relatively short time spent on generation itself. At JetBrains, we put a lot of effort into perfecting the code completion workflow so it can be both helpful and non-distracting for a programmer. We managed to ship the Full Line Code Completion feature to PyCharm Pro IDE and proved its usefulness in A/B testing on hundreds of real Python users. The paper describes our approach to context composing for the Transformer model that is a core of the feature's implementation. In addition to that, we share our next steps to improve the feature and emphasize the importance of several research aspects in the area.
This paper studies Ebert's hat problem for three and four players and two colors, where the probabilities of the colors may be different for each player. Our goal is to maximize the probability of winning the game and to describe winning strategies We use the concept of an adequate set. The construction of adequate sets is independent of underlying probabilities and we can use this fact in the analysis of our general case.
Despite their simplicity, linear models perform well at time series forecasting, even when pitted against deeper and more expensive models. A number of variations to the linear model have been proposed, often including some form of feature normalisation that improves model generalisation. In this paper we analyse the sets of functions expressible using these linear model architectures. In so doing we show that several popular variants of linear models for time series forecasting are equivalent and functionally indistinguishable from standard, unconstrained linear regression. We characterise the model classes for each linear variant. We demonstrate that each model can be reinterpreted as unconstrained linear regression over a suitably augmented feature set, and therefore admit closed-form solutions when using a mean-squared loss function. We provide experimental evidence that the models under inspection learn nearly identical solutions, and finally demonstrate that the simpler closed form solutions are superior forecasters across 72% of test settings.
Hyperspectral 3D imaging aims to acquire both depth and spectral information of a scene. However, existing methods are either prohibitively expensive and bulky or compromise on spectral and depth accuracy. In this work, we present Dispersed Structured Light (DSL), a cost-effective and compact method for accurate hyperspectral 3D imaging. DSL modifies a traditional projector-camera system by placing a sub-millimeter thick diffraction grating film front of the projector. The grating disperses structured light based on light wavelength. To utilize the dispersed structured light, we devise a model for dispersive projection image formation and a per-pixel hyperspectral 3D reconstruction method. We validate DSL by instantiating a compact experimental prototype. DSL achieves spectral accuracy of 18.8nm full-width half-maximum (FWHM) and depth error of 1mm. We demonstrate that DSL outperforms prior work on practical hyperspectral 3D imaging. DSL promises accurate and practical hyperspectral 3D imaging for diverse application domains, including computer vision and graphics, cultural heritage, geology, and biology.
Observations of groundwater pollutants, such as arsenic or Perfluorooctane sulfonate (PFOS), are riddled with left censoring. These measurements have impact on the health and lifestyle of the populace. Left censoring of these spatially correlated observations are usually addressed by applying Gaussian processes (GPs), which have theoretical advantages. However, this comes with a challenging computational complexity of $\mathcal{O}(n^3)$, which is impractical for large datasets. Additionally, a sizable proportion of the data being left-censored creates further bottlenecks, since the likelihood computation now involves an intractable high-dimensional integral of the multivariate Gaussian density. In this article, we tackle these two problems simultaneously by approximating the GP with a Gaussian Markov random field (GMRF) approach that exploits an explicit link between a GP with Mat\'ern correlation function and a GMRF using stochastic partial differential equations (SPDEs). We introduce a GMRF-based measurement error into the model, which alleviates the likelihood computation for the censored data, drastically improving the speed of the model while maintaining admirable accuracy. Our approach demonstrates robustness and substantial computational scalability, compared to state-of-the-art methods for censored spatial responses across various simulation settings. Finally, the fit of this fully Bayesian model to the concentration of PFOS in groundwater available at 24,959 sites across California, where 46.62\% responses are censored, produces prediction surface and uncertainty quantification in real time, thereby substantiating the applicability and scalability of the proposed method. Code for implementation is made available via GitHub.
Representation Learning (RL) plays a pivotal role in the success of many problems including cyberattack detection. Most of the RL methods for cyberattack detection are based on the latent vector of Auto-Encoder (AE) models. An AE transforms raw data into a new latent representation that better exposes the underlying characteristics of the input data. Thus, it is very useful for identifying cyberattacks. However, due to the heterogeneity and sophistication of cyberattacks, the representation of AEs is often entangled/mixed resulting in the difficulty for downstream attack detection models. To tackle this problem, we propose a novel mod called Twin Auto-Encoder (TAE). TAE deterministically transforms the latent representation into a more distinguishable representation namely the \textit{separable representation} and the reconstructsuct the separable representation at the output. The output of TAE called the \textit{reconstruction representation} is input to downstream models to detect cyberattacks. We extensively evaluate the effectiveness of TAE using a wide range of bench-marking datasets. Experiment results show the superior accuracy of TAE over state-of-the-art RL models and well-known machine learning algorithms. Moreover, TAE also outperforms state-of-the-art models on some sophisticated and challenging attacks. We then investigate various characteristics of TAE to further demonstrate its superiority.
During the Second World War, estimates of the number of tanks deployed by Germany were critically needed. The Allies adopted two methods to estimate this information: espionage and statistical analysis. The latter approach was far more successful and is as follows: assuming that the tanks are sequentially numbered starting from 1, if we observe $k$ serial numbers from an unknown total of $N$ tanks, with the highest observed number being $M$, then the best linear unbiased estimator for $N$ is $M(1+1/k)-1$. This is now known as the German Tank Problem. Suppose one wishes to estimate the productivity of a rival by inspecting captured or destroyed tanks, each with a unique serial number. In many situations, the original German Tank Problem is insufficient, since typically there are $l>1$ factories, and tanks produced by different factories may have serial numbers in disjoint ranges that are often far separated, let alone sequentially numbered starting from 1. We wish to estimate the total tank production across all of the factories. We construct an efficient procedure to estimate the total productivity and prove that our procedure effectively estimates $N$ when $\log l/\log k$ is sufficiently small, and is robust against both large and small gaps between factories. In the final section, we show that given information about the gaps, we can make a far better estimator that is also effective when we have a small number of samples. When the number of samples is small compared to the number of gaps, the Mean Squared Error of this new estimator is several orders of magnitude smaller than the one that assumes no information. This quantifies the importance of hiding such information if one wishes to conceal their productivity from a rival.
Multimodal Large Language Model (MLLM) recently has been a new rising research hotspot, which uses powerful Large Language Models (LLMs) as a brain to perform multimodal tasks. The surprising emergent capabilities of MLLM, such as writing stories based on images and OCR-free math reasoning, are rare in traditional methods, suggesting a potential path to artificial general intelligence. In this paper, we aim to trace and summarize the recent progress of MLLM. First of all, we present the formulation of MLLM and delineate its related concepts. Then, we discuss the key techniques and applications, including Multimodal Instruction Tuning (M-IT), Multimodal In-Context Learning (M-ICL), Multimodal Chain of Thought (M-CoT), and LLM-Aided Visual Reasoning (LAVR). Finally, we discuss existing challenges and point out promising research directions. In light of the fact that the era of MLLM has only just begun, we will keep updating this survey and hope it can inspire more research. An associated GitHub link collecting the latest papers is available at //github.com/BradyFU/Awesome-Multimodal-Large-Language-Models.
With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.
Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.