Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.
We present CLASSLA-Stanza, a pipeline for automatic linguistic annotation of the South Slavic languages, which is based on the Stanza natural language processing pipeline. We describe the main improvements in CLASSLA-Stanza with respect to Stanza, and give a detailed description of the model training process for the latest 2.1 release of the pipeline. We also report performance scores produced by the pipeline for different languages and varieties. CLASSLA-Stanza exhibits consistently high performance across all the supported languages and outperforms or expands its parent pipeline Stanza at all the supported tasks. We also present the pipeline's new functionality enabling efficient processing of web data and the reasons that led to its implementation.
The rise of powerful large language models (LLMs) brings about tremendous opportunities for innovation but also looming risks for individuals and society at large. We have reached a pivotal moment for ensuring that LLMs and LLM-infused applications are developed and deployed responsibly. However, a central pillar of responsible AI -- transparency -- is largely missing from the current discourse around LLMs. It is paramount to pursue new approaches to provide transparency for LLMs, and years of research at the intersection of AI and human-computer interaction (HCI) highlight that we must do so with a human-centered perspective: Transparency is fundamentally about supporting appropriate human understanding, and this understanding is sought by different stakeholders with different goals in different contexts. In this new era of LLMs, we must develop and design approaches to transparency by considering the needs of stakeholders in the emerging LLM ecosystem, the novel types of LLM-infused applications being built, and the new usage patterns and challenges around LLMs, all while building on lessons learned about how people process, interact with, and make use of information. We reflect on the unique challenges that arise in providing transparency for LLMs, along with lessons learned from HCI and responsible AI research that has taken a human-centered perspective on AI transparency. We then lay out four common approaches that the community has taken to achieve transparency -- model reporting, publishing evaluation results, providing explanations, and communicating uncertainty -- and call out open questions around how these approaches may or may not be applied to LLMs. We hope this provides a starting point for discussion and a useful roadmap for future research.
How to identify those equivalent entities between knowledge graphs (KGs), which is called Entity Alignment (EA), is a long-standing challenge. So far, many methods have been proposed, with recent focus on leveraging Deep Learning to solve this problem. However, we observe that most of the efforts has been paid to having better representation of entities, rather than improving entity matching from the learned representations. In fact, how to efficiently infer the entity pairs from this similarity matrix, which is essentially a matching problem, has been largely ignored by the community. Motivated by this observation, we conduct an in-depth analysis on existing algorithms that are particularly designed for solving this matching problem, and propose a novel matching method, named Bidirectional Matching (BMat). Our extensive experimental results on public datasets indicate that there is currently no single silver bullet solution for EA. In other words, different classes of entity similarity estimation may require different matching algorithms to reach the best EA results for each class. We finally conclude that using PARIS, the state-of-the-art EA approach, with BMat gives the best combination in terms of EA performance and the algorithm's time and space complexity.
Knowledge tracing (KT) aims to predict students' responses to practices based on their historical question-answering behaviors. However, most current KT methods focus on improving overall AUC, leaving ample room for optimization in modeling sequences of excessive or insufficient lengths. As sequences get longer, computational costs will increase exponentially. Therefore, KT methods usually truncate sequences to an acceptable length, which makes it difficult for models on online service systems to capture complete historical practice behaviors of students with too long sequences. Conversely, modeling students with short practice sequences using most KT methods may result in overfitting due to limited observation samples. To address the above limitations, we propose a model called Sequence-Flexible Knowledge Tracing (SFKT).
Opinion mining, also known as sentiment analysis, is a subfield of natural language processing (NLP) that focuses on identifying and extracting subjective information in textual material. This can include determining the overall sentiment of a piece of text (e.g., positive or negative), as well as identifying specific emotions or opinions expressed in the text, that involves the use of advanced machine and deep learning techniques. Recently, transformer-based language models make this task of human emotion analysis intuitive, thanks to the attention mechanism and parallel computation. These advantages make such models very powerful on linguistic tasks, unlike recurrent neural networks that spend a lot of time on sequential processing, making them prone to fail when it comes to processing long text. The scope of our paper aims to study the behaviour of the cutting-edge Transformer-based language models on opinion mining and provide a high-level comparison between them to highlight their key particularities. Additionally, our comparative study shows leads and paves the way for production engineers regarding the approach to focus on and is useful for researchers as it provides guidelines for future research subjects.
While very popular for evaluating extractive summarization task, the ROUGE metric has long been criticized for its lack of semantic awareness and its ignorance about the ranking quality of the summarizer. Thanks to previous research that has addressed these issues by proposing a gain-based automated metric called Sem-nCG, which is both rank and semantic aware. However, Sem-nCG does not consider the amount of redundancy present in a model-generated summary and currently does not support evaluation with multiple reference summaries. Unfortunately, addressing both these limitations simultaneously is not trivial. Therefore, in this paper, we propose a redundancy-aware Sem-nCG metric and demonstrate how this new metric can be used to evaluate model summaries against multiple references. We also explore different ways of incorporating redundancy into the original metric through extensive experiments. Experimental results demonstrate that the new redundancy-aware metric exhibits a higher correlation with human judgments than the original Sem-nCG metric for both single and multiple reference scenarios.
In the recent shift towards human-centric AI, the need for machines to accurately use natural language has become increasingly important. While a common approach to achieve this is to train large language models, this method presents a form of learning misalignment where the model may not capture the underlying structure and reasoning humans employ in using natural language, potentially leading to unexpected or unreliable behavior. Emergent communication (Emecom) is a field of research that has seen a growing number of publications in recent years, aiming to develop artificial agents capable of using natural language in a way that goes beyond simple discriminative tasks and can effectively communicate and learn new concepts. In this review, we present Emecom under two aspects. Firstly, we delineate all the common proprieties we find across the literature and how they relate to human interactions. Secondly, we identify two subcategories and highlight their characteristics and open challenges. We encourage researchers to work together by demonstrating that different methods can be viewed as diverse solutions to a common problem and emphasize the importance of including diverse perspectives and expertise in the field. We believe a deeper understanding of human communication is crucial to developing machines that can accurately use natural language in human-machine interactions.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.