亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Raw videos have been proven to own considerable feature redundancy where in many cases only a portion of frames can already meet the requirements for accurate recognition. In this paper, we are interested in whether such redundancy can be effectively leveraged to facilitate efficient inference in continuous sign language recognition (CSLR). We propose a novel adaptive model (AdaBrowse) to dynamically select a most informative subsequence from input video sequences by modelling this problem as a sequential decision task. In specific, we first utilize a lightweight network to quickly scan input videos to extract coarse features. Then these features are fed into a policy network to intelligently select a subsequence to process. The corresponding subsequence is finally inferred by a normal CSLR model for sentence prediction. As only a portion of frames are processed in this procedure, the total computations can be considerably saved. Besides temporal redundancy, we are also interested in whether the inherent spatial redundancy can be seamlessly integrated together to achieve further efficiency, i.e., dynamically selecting a lowest input resolution for each sample, whose model is referred to as AdaBrowse+. Extensive experimental results on four large-scale CSLR datasets, i.e., PHOENIX14, PHOENIX14-T, CSL-Daily and CSL, demonstrate the effectiveness of AdaBrowse and AdaBrowse+ by achieving comparable accuracy with state-of-the-art methods with 1.44$\times$ throughput and 2.12$\times$ fewer FLOPs. Comparisons with other commonly-used 2D CNNs and adaptive efficient methods verify the effectiveness of AdaBrowse. Code is available at \url{//github.com/hulianyuyy/AdaBrowse}.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

AI alignment is about ensuring AI systems only pursue goals and activities that are beneficial to humans. Most of the current approach to AI alignment is to learn what humans value from their behavioural data. This paper proposes a different way of looking at the notion of alignment, namely by introducing AI Alignment Dialogues: dialogues with which users and agents try to achieve and maintain alignment via interaction. We argue that alignment dialogues have a number of advantages in comparison to data-driven approaches, especially for behaviour support agents, which aim to support users in achieving their desired future behaviours rather than their current behaviours. The advantages of alignment dialogues include allowing the users to directly convey higher-level concepts to the agent, and making the agent more transparent and trustworthy. In this paper we outline the concept and high-level structure of alignment dialogues. Moreover, we conducted a qualitative focus group user study from which we developed a model that describes how alignment dialogues affect users, and created design suggestions for AI alignment dialogues. Through this we establish foundations for AI alignment dialogues and shed light on what requires further development and research.

We present a novel defense, against backdoor attacks on Deep Neural Networks (DNNs), wherein adversaries covertly implant malicious behaviors (backdoors) into DNNs. Our defense falls within the category of post-development defenses that operate independently of how the model was generated. The proposed defense is built upon a novel reverse engineering approach that can directly extract backdoor functionality of a given backdoored model to a backdoor expert model. The approach is straightforward -- finetuning the backdoored model over a small set of intentionally mislabeled clean samples, such that it unlearns the normal functionality while still preserving the backdoor functionality, and thus resulting in a model (dubbed a backdoor expert model) that can only recognize backdoor inputs. Based on the extracted backdoor expert model, we show the feasibility of devising highly accurate backdoor input detectors that filter out the backdoor inputs during model inference. Further augmented by an ensemble strategy with a finetuned auxiliary model, our defense, BaDExpert (Backdoor Input Detection with Backdoor Expert), effectively mitigates 17 SOTA backdoor attacks while minimally impacting clean utility. The effectiveness of BaDExpert has been verified on multiple datasets (CIFAR10, GTSRB and ImageNet) across various model architectures (ResNet, VGG, MobileNetV2 and Vision Transformer).

Large Language Models have not yet been broadly adapted for the analysis of scientific datasets due in part to the unique difficulties of tokenizing numbers. We propose xVal, a numerical encoding scheme that represents any real number using just a single token. xVal represents a given real number by scaling a dedicated embedding vector by the number value. Combined with a modified number-inference approach, this strategy renders the model end-to-end continuous when considered as a map from the numbers of the input string to those of the output string. This leads to an inductive bias that is generally more suitable for applications in scientific domains. We empirically evaluate our proposal on a number of synthetic and real-world datasets. Compared with existing number encoding schemes, we find that xVal is more token-efficient and demonstrates improved generalization.

When a predictive model is in production, it must be monitored in real-time to ensure that its performance does not suffer due to drift or abrupt changes to data. Ideally, this is done long before learning that the performance of the model itself has dropped by monitoring outcome data. In this paper we consider the problem of monitoring a predictive model that identifies the need for palliative care currently in production at the Mayo Clinic in Rochester, MN. We introduce a framework, called \textit{Bayes Watch}, for detecting change-points in high-dimensional longitudinal data with mixed variable types and missing values and for determining in which variables the change-point occurred. Bayes Watch fits an array of Gaussian Graphical Mixture Models to groupings of homogeneous data in time, called regimes, which are modeled as the observed states of a Markov process with unknown transition probabilities. In doing so, Bayes Watch defines a posterior distribution on a vector of regime assignments, which gives meaningful expressions on the probability of every possible change-point. Bayes Watch also allows for an effective and efficient fault detection system that assesses what features in the data where the most responsible for a given change-point.

Given the growing prevalence of diabetes, there has been significant interest in determining how diabetes affects instrumental daily functions, like driving. Complication of glucose control in diabetes includes hypoglycemic and hyperglycemic episodes, which may impair cognitive and psychomotor functions needed for safe driving. The goal of this paper was to determine patterns of diabetes speed behavior during acute glucose to drivers with diabetes who were euglycemic or control drivers without diabetes in a naturalistic driving environment. By employing distribution-based analytic methods which capture distribution patterns, our study advances prior literature that has focused on conventional approach of average speed to explore speed deviation patterns.

Human evaluation plays a crucial role in Natural Language Processing (NLP) as it assesses the quality and relevance of developed systems, thereby facilitating their enhancement. However, the absence of widely accepted human evaluation metrics in NLP hampers fair comparisons among different systems and the establishment of universal assessment standards. Through an extensive analysis of existing literature on human evaluation metrics, we identified several gaps in NLP evaluation methodologies. These gaps served as motivation for developing our own hierarchical evaluation framework. The proposed framework offers notable advantages, particularly in providing a more comprehensive representation of the NLP system's performance. We applied this framework to evaluate the developed Machine Reading Comprehension system, which was utilized within a human-AI symbiosis model. The results highlighted the associations between the quality of inputs and outputs, underscoring the necessity to evaluate both components rather than solely focusing on outputs. In future work, we will investigate the potential time-saving benefits of our proposed framework for evaluators assessing NLP systems.

Blind and low-vision (BLV) people rely on GPS-based systems for outdoor navigation. GPS's inaccuracy, however, causes them to veer off track, run into unexpected obstacles, and struggle to reach precise destinations. While prior work has made precise navigation possible indoors via additional hardware installations, enabling precise navigation outdoors remains a challenge. Ironically, many outdoor environments of interest such as downtown districts are already instrumented with hardware such as street cameras. In this work, we explore the idea of repurposing street cameras for outdoor navigation, and investigate the effectiveness of such an approach. Our resulting system, StreetNav, processes the cameras' video feeds using computer vision and gives BLV pedestrians real-time navigation assistance. Our user evaluations in the COSMOS testbed with eight BLV pedestrians show that StreetNav guides them more precisely than GPS, but its performance is sensitive to lighting conditions and environmental occlusions. We discuss future implications for deploying such systems at scale.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司