亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite temperature rise being a first-order design constraint, traditional thermal estimation techniques have severe limitations in modeling critical aspects affecting the temperature in modern-day chips. Existing thermal modeling techniques often ignore the effects of parameter variation, which can lead to significant errors. Such methods also ignore the dependence of conductivity on temperature and its variation. Leakage power is also incorporated inadequately by state-of-the-art techniques. Thermal modeling is a process that has to be repeated at least thousands of times in the design cycle, and hence speed is of utmost importance. To overcome these limitations, we propose VarSim, an ultrafast thermal simulator based on Green's functions. Green's functions have been shown to be faster than the traditional finite difference and finite element-based approaches but have rarely been employed in thermal modeling. Hence we propose a new Green's function-based method to capture the effects of leakage power as well as process variation analytically. We provide a closed-form solution for the Green's function considering the effects of variation on the process, temperature, and thermal conductivity. In addition, we propose a novel way of dealing with the anisotropicity introduced by process variation by splitting the Green's functions into shift-variant and shift-invariant components. Since our solutions are analytical expressions, we were able to obtain speedups that were several orders of magnitude over and above state-of-the-art proposals with a mean absolute error limited to 4% for a wide range of test cases. Furthermore, our method accurately captures the steady-state as well as the transient variation in temperature.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Collision detection is essential to virtually all robotics applications. However, traditional geometric collision detection methods generally require pre-existing workspace geometry representations; thus, they are unable to infer the collision detection function from sampled data when geometric information is unavailable. Learning-based approaches can overcome this limitation. Following this line of research, we present DeepCollide, an implicit neural representation method for approximating the collision detection function from sampled collision data. As shown by our theoretical analysis and empirical evidence, DeepCollide presents clear benefits over the state-of-the-art, as it relates to time cost scalability with respect to training data and DoF, as well as the ability to accurately express complex workspace geometries. We publicly release our code.

Image reconstruction-based anomaly detection models are widely explored in industrial visual inspection. However, existing models usually suffer from the trade-off between normal reconstruction fidelity and abnormal reconstruction distinguishability, which damages the performance. In this paper, we find that the above trade-off can be better mitigated by leveraging the distinct frequency biases between normal and abnormal reconstruction errors. To this end, we propose Frequency-aware Image Restoration (FAIR), a novel self-supervised image restoration task that restores images from their high-frequency components. It enables precise reconstruction of normal patterns while mitigating unfavorable generalization to anomalies. Using only a simple vanilla UNet, FAIR achieves state-of-the-art performance with higher efficiency on various defect detection datasets. Code: //github.com/liutongkun/FAIR.

Human motion prediction is important for mobile service robots and intelligent vehicles to operate safely and smoothly around people. The more accurate predictions are, particularly over extended periods of time, the better a system can, e.g., assess collision risks and plan ahead. In this paper, we propose to exploit maps of dynamics (MoDs, a class of general representations of place-dependent spatial motion patterns, learned from prior observations) for long-term human motion prediction (LHMP). We present a new MoD-informed human motion prediction approach, named CLiFF-LHMP, which is data efficient, explainable, and insensitive to errors from an upstream tracking system. Our approach uses CLiFF-map, a specific MoD trained with human motion data recorded in the same environment. We bias a constant velocity prediction with samples from the CLiFF-map to generate multi-modal trajectory predictions. In two public datasets we show that this algorithm outperforms the state of the art for predictions over very extended periods of time, achieving 45% more accurate prediction performance at 50s compared to the baseline.

In order for robots to safely navigate in unseen scenarios using learning-based methods, it is important to accurately detect out-of-training-distribution (OoD) situations online. Recently, Gaussian process state-space models (GPSSMs) have proven useful to discriminate unexpected observations by comparing them against probabilistic predictions. However, the capability for the model to correctly distinguish between in- and out-of-training distribution observations hinges on the accuracy of these predictions, primarily affected by the class of functions the GPSSM kernel can represent. In this paper, we propose (i) a novel approach to embed existing domain knowledge in the kernel and (ii) an OoD online runtime monitor, based on receding-horizon predictions. Domain knowledge is assumed given as a dataset collected either in simulation or using a nominal model. Numerical results show that the informed kernel yields better regression quality with smaller datasets, as compared to standard kernel choices. We demonstrate the effectiveness of the OoD monitor on a real quadruped navigating an indoor setting, which reliably classifies previously unseen terrains.

Vision Transformers have been incredibly effective when tackling computer vision tasks due to their ability to model long feature dependencies. By using large-scale training data and various self-supervised signals (e.g., masked random patches), vision transformers provide state-of-the-art performance on several benchmarking datasets, such as ImageNet-1k and CIFAR-10. However, these vision transformers pretrained over general large-scale image corpora could only produce an anisotropic representation space, limiting their generalizability and transferability to the target downstream tasks. In this paper, we propose a simple and effective Label-aware Contrastive Training framework LaCViT, which improves the isotropy of the pretrained representation space for vision transformers, thereby enabling more effective transfer learning amongst a wide range of image classification tasks. Through experimentation over five standard image classification datasets, we demonstrate that LaCViT-trained models outperform the original pretrained baselines by around 9% absolute Accuracy@1, and consistent improvements can be observed when applying LaCViT to our three evaluated vision transformers.

The widespread adoption of commercial autonomous vehicles (AVs) and advanced driver assistance systems (ADAS) may largely depend on their acceptance by society, for which their perceived trustworthiness and interpretability to riders are crucial. In general, this task is challenging because modern autonomous systems software relies heavily on black-box artificial intelligence models. Towards this goal, this paper introduces a novel dataset, Rank2Tell, a multi-modal ego-centric dataset for Ranking the importance level and Telling the reason for the importance. Using various close and open-ended visual question answering, the dataset provides dense annotations of various semantic, spatial, temporal, and relational attributes of various important objects in complex traffic scenarios. The dense annotations and unique attributes of the dataset make it a valuable resource for researchers working on visual scene understanding and related fields. Further, we introduce a joint model for joint importance level ranking and natural language captions generation to benchmark our dataset and demonstrate performance with quantitative evaluations.

Learning effective high-order feature interactions is very crucial in the CTR prediction task. However, it is very time-consuming to calculate high-order feature interactions with massive features in online e-commerce platforms. Most existing methods manually design a maximal order and further filter out the useless interactions from them. Although they reduce the high computational costs caused by the exponential growth of high-order feature combinations, they still suffer from the degradation of model capability due to the suboptimal learning of the restricted feature orders. The solution to maintain the model capability and meanwhile keep it efficient is a technical challenge, which has not been adequately addressed. To address this issue, we propose an adaptive feature interaction learning model, named as EulerNet, in which the feature interactions are learned in a complex vector space by conducting space mapping according to Euler's formula. EulerNet converts the exponential powers of feature interactions into simple linear combinations of the modulus and phase of the complex features, making it possible to adaptively learn the high-order feature interactions in an efficient way. Furthermore, EulerNet incorporates the implicit and explicit feature interactions into a unified architecture, which achieves the mutual enhancement and largely boosts the model capabilities. Such a network can be fully learned from data, with no need of pre-designed form or order for feature interactions. Extensive experiments conducted on three public datasets have demonstrated the effectiveness and efficiency of our approach. Our code is available at: //github.com/RUCAIBox/EulerNet.

The development of unmanned aerial vehicles (UAVs) has been gaining momentum in recent years owing to technological advances and a significant reduction in their cost. UAV technology can be used in a wide range of domains, including communication, agriculture, security, and transportation. It may be useful to group the UAVs into clusters/flocks in certain domains, and various challenges associated with UAV usage can be alleviated by clustering. Several computational challenges arise in UAV flock management, which can be solved by using machine learning (ML) methods. In this survey, we describe the basic terms relating to UAVS and modern ML methods, and we provide an overview of related tutorials and surveys. We subsequently consider the different challenges that appear in UAV flocks. For each issue, we survey several machine learning-based methods that have been suggested in the literature to handle the associated challenges. Thereafter, we describe various open issues in which ML can be applied to solve the different challenges of flocks, and we suggest means of using ML methods for this purpose. This comprehensive review may be useful for both researchers and developers in providing a wide view of various aspects of state-of-the-art ML technologies that are applicable to flock management.

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.

北京阿比特科技有限公司