Federated Graph Neural Network (FedGNN) has recently emerged as a rapidly growing research topic, as it integrates the strengths of graph neural networks and federated learning to enable advanced machine learning applications without direct access to sensitive data. Despite its advantages, the distributed nature of FedGNN introduces additional vulnerabilities, particularly backdoor attacks stemming from malicious participants. Although graph backdoor attacks have been explored, the compounded complexity introduced by the combination of GNNs and federated learning has hindered a comprehensive understanding of these attacks, as existing research lacks extensive benchmark coverage and in-depth analysis of critical factors. To address these limitations, we propose Bkd-FedGNN, a benchmark for backdoor attacks on FedGNN. Specifically, Bkd-FedGNN decomposes the graph backdoor attack into trigger generation and injection steps, and extending the attack to the node-level federated setting, resulting in a unified framework that covers both node-level and graph-level classification tasks. Moreover, we thoroughly investigate the impact of multiple critical factors in backdoor attacks on FedGNN. These factors are categorized into global-level and local-level factors, including data distribution, the number of malicious attackers, attack time, overlapping rate, trigger size, trigger type, trigger position, and poisoning rate. Finally, we conduct comprehensive evaluations on 13 benchmark datasets and 13 critical factors, comprising 1,725 experimental configurations for node-level and graph-level tasks from six domains. These experiments encompass over 8,000 individual tests, allowing us to provide a thorough evaluation and insightful observations that advance our understanding of backdoor attacks on FedGNN.The Bkd-FedGNN benchmark is publicly available at //github.com/usail-hkust/BkdFedGCN.
Recently, big artificial intelligence (AI) models represented by chatGPT have brought an incredible revolution. With the pre-trained big AI model (BAIM) in certain fields, numerous downstream tasks can be accomplished with only few-shot or even zero-shot learning and exhibit state-of-the-art performances. As widely envisioned, the big AI models are to rapidly penetrate into major intelligent services and applications, and are able to run at low unit cost and high flexibility. In 6G wireless networks, to fully enable intelligent communication, sensing and computing, apart from providing other intelligent wireless services and applications, it is of vital importance to design and deploy certain wireless BAIMs (wBAIMs). However, there still lacks investigation on architecture design and system evaluation for wBAIM. In this paper, we provide a comprehensive discussion as well as some in-depth prospects on the demand, design and deployment aspects of the wBAIM. We opine that wBAIM will be a recipe of the 6G wireless networks to build high-efficient, sustainable, versatile, and extensible wireless intelligence for numerous promising visions. Then, we present the core characteristics and principles to guide the design of wBAIMs, and discuss the key aspects of developing wBAIMs through identifying the differences between the existing BAIMs and the emerging wBAIMs. Finally, related research directions and potential solutions are outlined.
Inspired by the recent success of large language models (LLMs) like ChatGPT, researchers start to explore the adoption of LLMs for agile hardware design, such as generating design RTL based on natural-language instructions. However, in existing works, their target designs are all relatively simple and in a small scale, and proposed by the authors themselves, making a fair comparison among different LLM solutions challenging. In addition, many prior works only focus on the design correctness, without evaluating the design qualities of generated design RTL. In this work, we propose an open-source benchmark named RTLLM, for generating design RTL with natural language instructions. To systematically evaluate the auto-generated design RTL, we summarized three progressive goals, named syntax goal, functionality goal, and design quality goal. This benchmark can automatically provide a quantitative evaluation of any given LLM-based solution. Furthermore, we propose an easy-to-use yet surprisingly effective prompt engineering technique named self-planning, which proves to significantly boost the performance of GPT-3.5 in our proposed benchmark.
In the text-to-image generation field, recent remarkable progress in Stable Diffusion makes it possible to generate rich kinds of novel photorealistic images. However, current models still face misalignment issues (e.g., problematic spatial relation understanding and numeration failure) in complex natural scenes, which impedes the high-faithfulness text-to-image generation. Although recent efforts have been made to improve controllability by giving fine-grained guidance (e.g., sketch and scribbles), this issue has not been fundamentally tackled since users have to provide such guidance information manually. In this work, we strive to synthesize high-fidelity images that are semantically aligned with a given textual prompt without any guidance. Toward this end, we propose a coarse-to-fine paradigm to achieve layout planning and image generation. Concretely, we first generate the coarse-grained layout conditioned on a given textual prompt via in-context learning based on Large Language Models. Afterward, we propose a fine-grained object-interaction diffusion method to synthesize high-faithfulness images conditioned on the prompt and the automatically generated layout. Extensive experiments demonstrate that our proposed method outperforms the state-of-the-art models in terms of layout and image generation. Our code and settings are available at \url{//layoutllm-t2i.github.io}.
Visual Reinforcement Learning (Visual RL), coupled with high-dimensional observations, has consistently confronted the long-standing challenge of out-of-distribution generalization. Despite the focus on algorithms aimed at resolving visual generalization problems, we argue that the devil is in the existing benchmarks as they are restricted to isolated tasks and generalization categories, undermining a comprehensive evaluation of agents' visual generalization capabilities. To bridge this gap, we introduce RL-ViGen: a novel Reinforcement Learning Benchmark for Visual Generalization, which contains diverse tasks and a wide spectrum of generalization types, thereby facilitating the derivation of more reliable conclusions. Furthermore, RL-ViGen incorporates the latest generalization visual RL algorithms into a unified framework, under which the experiment results indicate that no single existing algorithm has prevailed universally across tasks. Our aspiration is that RL-ViGen will serve as a catalyst in this area, and lay a foundation for the future creation of universal visual generalization RL agents suitable for real-world scenarios. Access to our code and implemented algorithms is provided at //gemcollector.github.io/RL-ViGen/.
In this work, we propose Retentive Network (RetNet) as a foundation architecture for large language models, simultaneously achieving training parallelism, low-cost inference, and good performance. We theoretically derive the connection between recurrence and attention. Then we propose the retention mechanism for sequence modeling, which supports three computation paradigms, i.e., parallel, recurrent, and chunkwise recurrent. Specifically, the parallel representation allows for training parallelism. The recurrent representation enables low-cost $O(1)$ inference, which improves decoding throughput, latency, and GPU memory without sacrificing performance. The chunkwise recurrent representation facilitates efficient long-sequence modeling with linear complexity, where each chunk is encoded parallelly while recurrently summarizing the chunks. Experimental results on language modeling show that RetNet achieves favorable scaling results, parallel training, low-cost deployment, and efficient inference. The intriguing properties make RetNet a strong successor to Transformer for large language models. Code will be available at //aka.ms/retnet.
Large Language Models (LLMs) have shown outstanding performance across wide range of downstream tasks. This competency is attributed to their substantial parameter size and pre-training on extensive corpus. Moreover, LLMs have exhibited enhanced reasoning capabilities in tackling complex reasoning tasks, owing to the utilization of a method named ``Chain-of-Thought (CoT) prompting''. This method is designed to generate intermediate reasoning steps that guide the inference of the final answer. However, it is essential to highlight that these advanced reasoning abilities appear to emerge in models with a minimum of 10 billion parameters, thereby limiting its efficacy in situations where computational resources are constrained. In this paper, we investigate the possibility of transferring the reasoning capabilities of LLMs to smaller models via knowledge distillation. Specifically, we propose Sci-CoT, a two-stage framework that separates the processes of generating rationales and inferring answers. This method enables a more efficient use of rationales during the answer inference stage, leading to improved performance on scientific question-answering tasks. Utilizing Sci-CoT, our 80-million parameter model is able to exceed the performance of BLOOM-176B in the ARC-Easy dataset under the few shot setting.
Large Language Models (LLMs) have sparked significant interest in their generative capabilities, leading to the development of various commercial applications. The high cost of using the models drives application builders to maximize the value of generation under a limited inference budget. This paper presents a study of optimizing inference hyperparameters such as the number of responses, temperature and max tokens, which significantly affects the utility/cost of text generation. We design a framework named EcoOptiGen which leverages economical hyperparameter optimization and cost-based pruning. Experiments with the GPT-3.5/GPT-4 models on a variety of tasks verify its effectiveness. EcoOptiGen is implemented in the `autogen' package of the FLAML library: \url{//aka.ms/autogen}.
Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.
Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.