亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The \emph{turnpike property} in contemporary macroeconomics asserts that if an economic planner seeks to move an economy from one level of capital to another, then the most efficient path, as long as the planner has enough time, is to rapidly move stock to a level close to the optimal stationary or constant path, then allow for capital to develop along that path until the desired term is nearly reached, at which point the stock ought to be moved to the final target. Motivated in part by its nature as a resource allocation strategy, over the past decade, the turnpike property has also been shown to hold for several classes of partial differential equations arising in mechanics. When formalized mathematically, the turnpike theory corroborates the insights from economics: for an optimal control problem set in a finite-time horizon, optimal controls and corresponding states, are close (often exponentially), during most of the time, except near the initial and final time, to the optimal control and corresponding state for the associated stationary optimal control problem. In particular, the former are mostly constant over time. This fact provides a rigorous meaning to the asymptotic simplification that some optimal control problems appear to enjoy over long time intervals, allowing the consideration of the corresponding stationary problem for computing and applications. We review a slice of the theory developed over the past decade --the controllability of the underlying system is an important ingredient, and can even be used to devise simple turnpike-like strategies which are nearly optimal--, and present several novel applications, including, among many others, the characterization of Hamilton-Jacobi-Bellman asymptotics, and stability estimates in deep learning via residual neural networks.

相關內容

The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.

Optimal feedback control (OFC) is a theory from the motor control literature that explains how humans move their body to achieve a certain goal, e.g., pointing with the finger. OFC is based on the assumption that humans aim to control their body optimally, within the constraints imposed by body, environment, and task. In this paper, we explain how this theory can be applied to understanding Human-Computer Interaction (HCI) in the case of pointing. We propose that the human body and computer dynamics can be interpreted as a single dynamical system. The system state is controlled by the user via muscle control signals, and estimated from observations. Between-trial variability arises from signal-dependent control noise and observation noise. We compare four different models from optimal control theory and evaluate to what degree these models can replicate movements in the case of mouse pointing. We introduce a procedure to identify parameters that best explain observed user behavior. To support HCI researchers in simulating, analyzing, and optimizing interaction movements, we provide the Python toolbox OFC4HCI. We conclude that OFC presents a powerful framework for HCI to understand and simulate motion of the human body and of the interface on a moment by moment basis.

In a sports competition, a team might lose a powerful incentive to exert full effort if its final rank does not depend on the outcome of the matches still to be played. Therefore, the organiser should reduce the probability of such a situation to the extent possible. Our paper provides a classification scheme to identify these weakly (where one team is indifferent) or strongly (where both teams are indifferent) stakeless games. A statistical model is estimated to simulate the UEFA Champions League groups and compare the candidate schedules used in the 2021/22 season according to the competitiveness of the matches played in the last round(s). The option followed in four of the eight groups is found to be optimal under a wide set of parameters. Minimising the number of strongly stakeless matches is verified to be a likely goal in the computer draw of the fixture that remains hidden from the public.

The problem of continuous inverse optimal control (over finite time horizon) is to learn the unknown cost function over the sequence of continuous control variables from expert demonstrations. In this article, we study this fundamental problem in the framework of energy-based model, where the observed expert trajectories are assumed to be random samples from a probability density function defined as the exponential of the negative cost function up to a normalizing constant. The parameters of the cost function are learned by maximum likelihood via an "analysis by synthesis" scheme, which iterates (1) synthesis step: sample the synthesized trajectories from the current probability density using the Langevin dynamics via back-propagation through time, and (2) analysis step: update the model parameters based on the statistical difference between the synthesized trajectories and the observed trajectories. Given the fact that an efficient optimization algorithm is usually available for an optimal control problem, we also consider a convenient approximation of the above learning method, where we replace the sampling in the synthesis step by optimization. Moreover, to make the sampling or optimization more efficient, we propose to train the energy-based model simultaneously with a top-down trajectory generator via cooperative learning, where the trajectory generator is used to fast initialize the synthesis step of the energy-based model. We demonstrate the proposed methods on autonomous driving tasks, and show that they can learn suitable cost functions for optimal control.

We extend the Deep Galerkin Method (DGM) introduced in Sirignano and Spiliopoulos (2018)} to solve a number of partial differential equations (PDEs) that arise in the context of optimal stochastic control and mean field games. First, we consider PDEs where the function is constrained to be positive and integrate to unity, as is the case with Fokker-Planck equations. Our approach involves reparameterizing the solution as the exponential of a neural network appropriately normalized to ensure both requirements are satisfied. This then gives rise to nonlinear a partial integro-differential equation (PIDE) where the integral appearing in the equation is handled by a novel application of importance sampling. Secondly, we tackle a number of Hamilton-Jacobi-Bellman (HJB) equations that appear in stochastic optimal control problems. The key contribution is that these equations are approached in their unsimplified primal form which includes an optimization problem as part of the equation. We extend the DGM algorithm to solve for the value function and the optimal control \simultaneously by characterizing both as deep neural networks. Training the networks is performed by taking alternating stochastic gradient descent steps for the two functions, a technique inspired by the policy improvement algorithms (PIA).

The vast majority of existing algorithms for unsupervised domain adaptation (UDA) focus on adapting from a labeled source domain to an unlabeled target domain directly in a one-off way. Gradual domain adaptation (GDA), on the other hand, assumes a path of $(T-1)$ unlabeled intermediate domains bridging the source and target, and aims to provide better generalization in the target domain by leveraging the intermediate ones. Under certain assumptions, Kumar et al. (2020) proposed a simple algorithm, Gradual Self-Training, along with a generalization bound in the order of $e^{O(T)} \left(\varepsilon_0+O\left(\sqrt{log(T)/n}\right)\right)$ for the target domain error, where $\varepsilon_0$ is the source domain error and $n$ is the data size of each domain. Due to the exponential factor, this upper bound becomes vacuous when $T$ is only moderately large. In this work, we analyze gradual self-training under more general and relaxed assumptions, and prove a significantly improved generalization bound as $\widetilde{O}\left(\varepsilon_0 + T\Delta + T/\sqrt{n} + 1/\sqrt{nT}\right)$, where $\Delta$ is the average distributional distance between consecutive domains. Compared with the existing bound with an exponential dependency on $T$ as a multiplicative factor, our bound only depends on $T$ linearly and additively. Perhaps more interestingly, our result implies the existence of an optimal choice of $T$ that minimizes the generalization error, and it also naturally suggests an optimal way to construct the path of intermediate domains so as to minimize the accumulative path length $T\Delta$ between the source and target. To corroborate the implications of our theory, we examine gradual self-training on multiple semi-synthetic and real datasets, which confirms our findings. We believe our insights provide a path forward toward the design of future GDA algorithms.

The stochastic gradient Langevin Dynamics is one of the most fundamental algorithms to solve sampling problems and non-convex optimization appearing in several machine learning applications. Especially, its variance reduced versions have nowadays gained particular attention. In this paper, we study two variants of this kind, namely, the Stochastic Variance Reduced Gradient Langevin Dynamics and the Stochastic Recursive Gradient Langevin Dynamics. We prove their convergence to the objective distribution in terms of KL-divergence under the sole assumptions of smoothness and Log-Sobolev inequality which are weaker conditions than those used in prior works for these algorithms. With the batch size and the inner loop length set to $\sqrt{n}$, the gradient complexity to achieve an $\epsilon$-precision is $\tilde{O}((n+dn^{1/2}\epsilon^{-1})\gamma^2 L^2\alpha^{-2})$, which is an improvement from any previous analyses. We also show some essential applications of our result to non-convex optimization.

Low-rank matrix estimation under heavy-tailed noise is challenging, both computationally and statistically. Convex approaches have been proven statistically optimal but suffer from high computational costs, especially since robust loss functions are usually non-smooth. More recently, computationally fast non-convex approaches via sub-gradient descent are proposed, which, unfortunately, fail to deliver a statistically consistent estimator even under sub-Gaussian noise. In this paper, we introduce a novel Riemannian sub-gradient (RsGrad) algorithm which is not only computationally efficient with linear convergence but also is statistically optimal, be the noise Gaussian or heavy-tailed. Convergence theory is established for a general framework and specific applications to absolute loss, Huber loss, and quantile loss are investigated. Compared with existing non-convex methods, ours reveals a surprising phenomenon of dual-phase convergence. In phase one, RsGrad behaves as in a typical non-smooth optimization that requires gradually decaying stepsizes. However, phase one only delivers a statistically sub-optimal estimator which is already observed in the existing literature. Interestingly, during phase two, RsGrad converges linearly as if minimizing a smooth and strongly convex objective function and thus a constant stepsize suffices. Underlying the phase-two convergence is the smoothing effect of random noise to the non-smooth robust losses in an area close but not too close to the truth. Lastly, RsGrad is applicable for low-rank tensor estimation under heavy-tailed noise where a statistically optimal rate is attainable with the same phenomenon of dual-phase convergence, and a novel shrinkage-based second-order moment method is guaranteed to deliver a warm initialization. Numerical simulations confirm our theoretical discovery and showcase the superiority of RsGrad over prior methods.

We introduce a novel methodology for particle filtering in dynamical systems where the evolution of the signal of interest is described by a SDE and observations are collected instantaneously at prescribed time instants. The new approach includes the discretisation of the SDE and the design of efficient particle filters for the resulting discrete-time state-space model. The discretisation scheme converges with weak order 1 and it is devised to create a sequential dependence structure along the coordinates of the discrete-time state vector. We introduce a class of space-sequential particle filters that exploits this structure to improve performance when the system dimension is large. This is numerically illustrated by a set of computer simulations for a stochastic Lorenz 96 system with additive noise. The new space-sequential particle filters attain approximately constant estimation errors as the dimension of the Lorenz 96 system is increased, with a computational cost that increases polynomially, rather than exponentially, with the system dimension. Besides the new numerical scheme and particle filters, we provide in this paper a general framework for discrete-time filtering in continuous-time dynamical systems described by a SDE and instantaneous observations. Provided that the SDE is discretised using a weakly-convergent scheme, we prove that the marginal posterior laws of the resulting discrete-time state-space model converge to the posterior marginal posterior laws of the original continuous-time state-space model under a suitably defined metric. This result is general and not restricted to the numerical scheme or particle filters specifically studied in this manuscript.

We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'

北京阿比特科技有限公司