亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Agricultural production is facing severe challenges in the next decades induced by climate change and the need for sustainability, reducing its impact on the environment. Advancements in field management through non-chemical weeding by robots in combination with monitoring of crops by autonomous unmanned aerial vehicles (UAVs) and breeding of novel and more resilient crop varieties are helpful to address these challenges. The analysis of plant traits, called phenotyping, is an essential activity in plant breeding, it however involves a great amount of manual labor. With this paper, we address the problem of automatic fine-grained organ-level geometric analysis needed for precision phenotyping. As the availability of real-world data in this domain is relatively scarce, we propose a novel dataset that was acquired using UAVs capturing high-resolution images of a real breeding trial containing 48 plant varieties and therefore covering great morphological and appearance diversity. This enables the development of approaches for autonomous phenotyping that generalize well to different varieties. Based on overlapping high-resolution images from multiple viewing angles, we compute photogrammetric dense point clouds and provide detailed and accurate point-wise labels for plants, leaves, and salient points as the tip and the base. Additionally, we include measurements of phenotypic traits performed by experts from the German Federal Plant Variety Office on the real plants, allowing the evaluation of new approaches not only on segmentation and keypoint detection but also directly on the downstream tasks. The provided labeled point clouds enable fine-grained plant analysis and support further progress in the development of automatic phenotyping approaches, but also enable further research in surface reconstruction, point cloud completion, and semantic interpretation of point clouds.

相關內容

Traditional Time Delay Neural Networks (TDNN) have achieved state-of-the-art performance at the cost of high computational complexity and slower inference speed, making them difficult to implement in an industrial environment. The Densely Connected Time Delay Neural Network (D-TDNN) with Context Aware Masking (CAM) module has proven to be an efficient structure to reduce complexity while maintaining system performance. In this paper, we propose a fast and lightweight model, LightCAM, which further adopts a depthwise separable convolution module (DSM) and uses multi-scale feature aggregation (MFA) for feature fusion at different levels. Extensive experiments are conducted on VoxCeleb dataset, the comparative results show that it has achieved an EER of 0.83 and MinDCF of 0.0891 in VoxCeleb1-O, which outperforms the other mainstream speaker verification methods. In addition, complexity analysis further demonstrates that the proposed architecture has lower computational cost and faster inference speed.

Vision Transformer (ViT) models which were recently introduced by the transformer architecture have shown to be very competitive and often become a popular alternative to Convolutional Neural Networks (CNNs). However, the high computational requirements of these models limit their practical applicability especially on low-power devices. Current state-of-the-art employs approximate multipliers to address the highly increased compute demands of DNN accelerators but no prior research has explored their use on ViT models. In this work we propose TransAxx, a framework based on the popular PyTorch library that enables fast inherent support for approximate arithmetic to seamlessly evaluate the impact of approximate computing on DNNs such as ViT models. Using TransAxx we analyze the sensitivity of transformer models on the ImageNet dataset to approximate multiplications and perform approximate-aware finetuning to regain accuracy. Furthermore, we propose a methodology to generate approximate accelerators for ViT models. Our approach uses a Monte Carlo Tree Search (MCTS) algorithm to efficiently search the space of possible configurations using a hardware-driven hand-crafted policy. Our evaluation demonstrates the efficacy of our methodology in achieving significant trade-offs between accuracy and power, resulting in substantial gains without compromising on performance.

We present GALA3D, generative 3D GAussians with LAyout-guided control, for effective compositional text-to-3D generation. We first utilize large language models (LLMs) to generate the initial layout and introduce a layout-guided 3D Gaussian representation for 3D content generation with adaptive geometric constraints. We then propose an object-scene compositional optimization mechanism with conditioned diffusion to collaboratively generate realistic 3D scenes with consistent geometry, texture, scale, and accurate interactions among multiple objects while simultaneously adjusting the coarse layout priors extracted from the LLMs to align with the generated scene. Experiments show that GALA3D is a user-friendly, end-to-end framework for state-of-the-art scene-level 3D content generation and controllable editing while ensuring the high fidelity of object-level entities within the scene. Source codes and models will be available at //gala3d.github.io/.

The electronic design automation of analog circuits has been a longstanding challenge in the integrated circuit field due to the huge design space and complex design trade-offs among circuit specifications. In the past decades, intensive research efforts have mostly been paid to automate the transistor sizing with a given circuit topology. By recognizing the graph nature of circuits, this paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing based on the encoder-dependent optimization subroutines. Particularly, CktGNN encodes circuit graphs using a two-level GNN framework (of nested GNN) where circuits are represented as combinations of subgraphs in a known subgraph basis. In this way, it significantly improves design efficiency by reducing the number of subgraphs to perform message passing. Nonetheless, another critical roadblock to advancing learning-assisted circuit design automation is a lack of public benchmarks to perform canonical assessment and reproducible research. To tackle the challenge, we introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers with carefully-extracted circuit specifications. OCB is also equipped with communicative circuit generation and evaluation capabilities such that it can help to generalize CktGNN to design various analog circuits by producing corresponding datasets. Experiments on OCB show the extraordinary advantages of CktGNN through representation-based optimization frameworks over other recent powerful GNN baselines and human experts' manual designs. Our work paves the way toward a learning-based open-sourced design automation for analog circuits. Our source code is available at \url{//github.com/zehao-dong/CktGNN}.

We present a novel approach for the detection of deepfake videos using a pair of vision transformers pre-trained by a self-supervised masked autoencoding setup. Our method consists of two distinct components, one of which focuses on learning spatial information from individual RGB frames of the video, while the other learns temporal consistency information from optical flow fields generated from consecutive frames. Unlike most approaches where pre-training is performed on a generic large corpus of images, we show that by pre-training on smaller face-related datasets, namely Celeb-A (for the spatial learning component) and YouTube Faces (for the temporal learning component), strong results can be obtained. We perform various experiments to evaluate the performance of our method on commonly used datasets namely FaceForensics++ (Low Quality and High Quality, along with a new highly compressed version named Very Low Quality) and Celeb-DFv2 datasets. Our experiments show that our method sets a new state-of-the-art on FaceForensics++ (LQ, HQ, and VLQ), and obtains competitive results on Celeb-DFv2. Moreover, our method outperforms other methods in the area in a cross-dataset setup where we fine-tune our model on FaceForensics++ and test on CelebDFv2, pointing to its strong cross-dataset generalization ability.

Recent generative-prior-based methods have shown promising blind face restoration performance. They usually project the degraded images to the latent space and then decode high-quality faces either by single-stage latent optimization or directly from the encoding. Generating fine-grained facial details faithful to inputs remains a challenging problem. Most existing methods produce either overly smooth outputs or alter the identity as they attempt to balance between generation and reconstruction. This may be attributed to the typical trade-off between quality and resolution in the latent space. If the latent space is highly compressed, the decoded output is more robust to degradations but shows worse fidelity. On the other hand, a more flexible latent space can capture intricate facial details better, but is extremely difficult to optimize for highly degraded faces using existing techniques. To address these issues, we introduce a diffusion-based-prior inside a VQGAN architecture that focuses on learning the distribution over uncorrupted latent embeddings. With such knowledge, we iteratively recover the clean embedding conditioning on the degraded counterpart. Furthermore, to ensure the reverse diffusion trajectory does not deviate from the underlying identity, we train a separate Identity Recovery Network and use its output to constrain the reverse diffusion process. Specifically, using a learnable latent mask, we add gradients from a face-recognition network to a subset of latent features that correlates with the finer identity-related details in the pixel space, leaving the other features untouched. Disentanglement between perception and fidelity in the latent space allows us to achieve the best of both worlds. We perform extensive evaluations on multiple real and synthetic datasets to validate the superiority of our approach.

Traditional Time Delay Neural Networks (TDNN) have achieved state-of-the-art performance at the cost of high computational complexity and slower inference speed, making them difficult to implement in an industrial environment. The Densely Connected Time Delay Neural Network (D-TDNN) with Context Aware Masking (CAM) module has proven to be an efficient structure to reduce complexity while maintaining system performance. In this paper, we propose a fast and lightweight model, LightCAM, which further adopts a depthwise separable convolution module (DSM) and uses multi-scale feature aggregation (MFA) for feature fusion at different levels. Extensive experiments are conducted on VoxCeleb dataset, the comparative results show that it has achieved an EER of 0.83 and MinDCF of 0.0891 in VoxCeleb1-O, which outperforms the other mainstream speaker verification methods. In addition, complexity analysis further demonstrates that the proposed architecture has lower computational cost and faster inference speed.

The entertainment industry relies on 3D visual content to create immersive experiences, but traditional methods for creating textured 3D models can be time-consuming and subjective. Generative networks such as StyleGAN have advanced image synthesis, but generating 3D objects with high-fidelity textures is still not well explored, and existing methods have limitations. We propose the Semantic-guided Conditional Texture Generator (CTGAN), producing high-quality textures for 3D shapes that are consistent with the viewing angle while respecting shape semantics. CTGAN utilizes the disentangled nature of StyleGAN to finely manipulate the input latent codes, enabling explicit control over both the style and structure of the generated textures. A coarse-to-fine encoder architecture is introduced to enhance control over the structure of the resulting textures via input segmentation. Experimental results show that CTGAN outperforms existing methods on multiple quality metrics and achieves state-of-the-art performance on texture generation in both conditional and unconditional settings.

The recent advancements in deep convolutional neural networks have shown significant promise in the domain of road scene parsing. Nevertheless, the existing works focus primarily on freespace detection, with little attention given to hazardous road defects that could compromise both driving safety and comfort. In this paper, we introduce RoadFormer, a novel Transformer-based data-fusion network developed for road scene parsing. RoadFormer utilizes a duplex encoder architecture to extract heterogeneous features from both RGB images and surface normal information. The encoded features are subsequently fed into a novel heterogeneous feature synergy block for effective feature fusion and recalibration. The pixel decoder then learns multi-scale long-range dependencies from the fused and recalibrated heterogeneous features, which are subsequently processed by a Transformer decoder to produce the final semantic prediction. Additionally, we release SYN-UDTIRI, the first large-scale road scene parsing dataset that contains over 10,407 RGB images, dense depth images, and the corresponding pixel-level annotations for both freespace and road defects of different shapes and sizes. Extensive experimental evaluations conducted on our SYN-UDTIRI dataset, as well as on three public datasets, including KITTI road, CityScapes, and ORFD, demonstrate that RoadFormer outperforms all other state-of-the-art networks for road scene parsing. Specifically, RoadFormer ranks first on the KITTI road benchmark. Our source code, created dataset, and demo video are publicly available at mias.group/RoadFormer.

Evaluating the quality of learned representations without relying on a downstream task remains one of the challenges in representation learning. In this work, we present Geometric Component Analysis (GeomCA) algorithm that evaluates representation spaces based on their geometric and topological properties. GeomCA can be applied to representations of any dimension, independently of the model that generated them. We demonstrate its applicability by analyzing representations obtained from a variety of scenarios, such as contrastive learning models, generative models and supervised learning models.

北京阿比特科技有限公司