亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a manifold-based autoencoder method for learning nonlinear dynamics in time, notably partial differential equations (PDEs), in which the manifold latent space evolves according to Ricci flow. This can be accomplished by simulating Ricci flow in a physics-informed setting, and manifold quantities can be matched so that Ricci flow is empirically achieved. With our methodology, the manifold is learned as part of the training procedure, so ideal geometries may be discerned, while the evolution simultaneously induces a more accommodating latent representation over static methods. We present our method on a range of numerical experiments consisting of PDEs that encompass desirable characteristics such as periodicity and randomness, remarking error on in-distribution and extrapolation scenarios.

相關內容

Physics-informed neural networks (PINNs) have emerged as powerful tools for solving a wide range of partial differential equations (PDEs). However, despite their user-friendly interface and broad applicability, PINNs encounter challenges in accurately resolving PDEs, especially when dealing with singular cases that may lead to unsatisfactory local minima. To address these challenges and improve solution accuracy, we propose an innovative approach called Annealed Adaptive Importance Sampling (AAIS) for computing the discretized PDE residuals of the cost functions, inspired by the Expectation Maximization algorithm used in finite mixtures to mimic target density. Our objective is to approximate discretized PDE residuals by strategically sampling additional points in regions with elevated residuals, thus enhancing the effectiveness and accuracy of PINNs. Implemented together with a straightforward resampling strategy within PINNs, our AAIS algorithm demonstrates significant improvements in efficiency across a range of tested PDEs, even with limited training datasets. Moreover, our proposed AAIS-PINN method shows promising capabilities in solving high-dimensional singular PDEs. The adaptive sampling framework introduced here can be integrated into various PINN frameworks.

We propose a continuous approach for computing the pseudospectra of linear operators following a 'solve-then-discretize' strategy. Instead of taking a finite section approach or using a finite-dimensional matrix to approximate the operator of interest, the new method employs an operator analogue of the Lanczos process to work directly with operators and functions. The method is shown to be free of spectral pollution and spectral invisibility, fully adaptive, nearly optimal in accuracy, and well-conditioned. The advantages of the method are demonstrated by extensive numerical examples and comparison with the traditional method.

The lacking of analytic solutions of diverse partial differential equations (PDEs) gives birth to a series of computational techniques for numerical solutions. Although numerous latest advances are accomplished in developing neural operators, a kind of neural-network-based PDE solver, these solvers become less accurate and explainable while learning long-term behaviors of non-linear PDE families. In this paper, we propose the Koopman neural operator (KNO), a new neural operator, to overcome these challenges. With the same objective of learning an infinite-dimensional mapping between Banach spaces that serves as the solution operator of the target PDE family, our approach differs from existing models by formulating a non-linear dynamic system of equation solution. By approximating the Koopman operator, an infinite-dimensional operator governing all possible observations of the dynamic system, to act on the flow mapping of the dynamic system, we can equivalently learn the solution of a non-linear PDE family by solving simple linear prediction problems. We validate the KNO in mesh-independent, long-term, and5zero-shot predictions on five representative PDEs (e.g., the Navier-Stokes equation and the Rayleigh-B{\'e}nard convection) and three real dynamic systems (e.g., global water vapor patterns and western boundary currents). In these experiments, the KNO exhibits notable advantages compared with previous state-of-the-art models, suggesting the potential of the KNO in supporting diverse science and engineering applications (e.g., PDE solving, turbulence modelling, and precipitation forecasting).

We introduce a new class of probabilistic cellular automata that are capable of exhibiting rich dynamics such as synchronization and ergodicity and can be easily inferred from data. The system is a finite-state locally interacting Markov chain on a circular graph. Each site's subsequent state is random, with a distribution determined by its neighborhood's empirical distribution multiplied by a local transition matrix. We establish sufficient and necessary conditions on the local transition matrix for synchronization and ergodicity. Also, we introduce novel least squares estimators for inferring the local transition matrix from various types of data, which may consist of either multiple trajectories, a long trajectory, or ensemble sequences without trajectory information. Under suitable identifiability conditions, we show the asymptotic normality of these estimators and provide non-asymptotic bounds for their accuracy.

We consider the computation of statistical moments to operator equations with stochastic data. We remark that application of PINNs -- referred to as TPINNs -- allows to solve the induced tensor operator equations under minimal changes of existing PINNs code, and enabling handling of non-linear and time-dependent operators. We propose two types of architectures, referred to as vanilla and multi-output TPINNs, and investigate their benefits and limitations. Exhaustive numerical experiments are performed; demonstrating applicability and performance; raising a variety of new promising research avenues.

Random fields are ubiquitous mathematical structures in physics, with applications ranging from thermodynamics and statistical physics to quantum field theory and cosmology. Recent works on information geometry of Gaussian random fields proposed mathematical expressions for the components of the metric tensor of the underlying parametric space, allowing the computation of the curvature in each point of the manifold. In this study, our hypothesis is that time irreversibility in Gaussian random fields dynamics is a direct consequence of intrinsic geometric properties (curvature) of their parametric space. In order to validate this hypothesis, we compute the components of the metric tensor and derive the twenty seven Christoffel symbols of the metric to define the Euler-Lagrange equations, a system of partial differential equations that are used to build geodesic curves in Riemannian manifolds. After that, by the application of the fourth-order Runge-Kutta method and Markov Chain Monte Carlo simulation, we numerically build geodesic curves starting from an arbitrary initial point in the manifold. The obtained results show that, when the system undergoes phase transitions, the geodesic curve obtained by time reversing the computational simulation diverges from the original curve, showing a strange effect that we called the geodesic dispersion phenomenon, which suggests that time irreversibility in random fields is related to the intrinsic geometry of their parametric space.

We study the potential of noisy labels y to pretrain semantic segmentation models in a multi-modal learning framework for geospatial applications. Specifically, we propose a novel Cross-modal Sample Selection method (CromSS) that utilizes the class distributions P^{(d)}(x,c) over pixels x and classes c modelled by multiple sensors/modalities d of a given geospatial scene. Consistency of predictions across sensors $d$ is jointly informed by the entropy of P^{(d)}(x,c). Noisy label sampling we determine by the confidence of each sensor d in the noisy class label, P^{(d)}(x,c=y(x)). To verify the performance of our approach, we conduct experiments with Sentinel-1 (radar) and Sentinel-2 (optical) satellite imagery from the globally-sampled SSL4EO-S12 dataset. We pair those scenes with 9-class noisy labels sourced from the Google Dynamic World project for pretraining. Transfer learning evaluations (downstream task) on the DFC2020 dataset confirm the effectiveness of the proposed method for remote sensing image segmentation.

We discuss the design of an invariant measure-preserving transformed dynamics for the numerical treatment of Langevin dynamics based on rescaling of time, with the goal of sampling from an invariant measure. Given an appropriate monitor function which characterizes the numerical difficulty of the problem as a function of the state of the system, this method allows the stepsizes to be reduced only when necessary, facilitating efficient recovery of long-time behavior. We study both the overdamped and underdamped Langevin dynamics. We investigate how an appropriate correction term that ensures preservation of the invariant measure should be incorporated into a numerical splitting scheme. Finally, we demonstrate the use of the technique in several model systems, including a Bayesian sampling problem with a steep prior.

We present MULTIGAIN 2.0, a major extension to the controller synthesis tool MULTIGAIN, built on top of the probabilistic model checker PRISM. This new version extends MULTIGAIN's multi-objective capabilities, by allowing for the formal verification and synthesis of controllers for probabilistic systems with multi-dimensional long-run average reward structures, steady-state constraints, and linear temporal logic properties. Additionally, MULTIGAIN 2.0 can modify the underlying linear program to prevent unbounded-memory and other unintuitive solutions and visualizes Pareto curves, in the two- and three-dimensional cases, to facilitate trade-off analysis in multi-objective scenarios.

We establish a connection between problems studied in rigidity theory and matroids arising from linear algebraic constructions like tensor products and symmetric products. A special case of this correspondence identifies the problem of giving a description of the correctable erasure patterns in a maximally recoverable tensor code with the problem of describing bipartite rigid graphs or low-rank completable matrix patterns. Additionally, we relate dependencies among symmetric products of generic vectors to graph rigidity and symmetric matrix completion. With an eye toward applications to computer science, we study the dependency of these matroids on the characteristic by giving new combinatorial descriptions in several cases, including the first description of the correctable patterns in an (m, n, a=2, b=2) maximally recoverable tensor code.

北京阿比特科技有限公司