亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

XORNet-based low power controller is a popular technique to reduce circuit transitions in scan-based testing. However, existing solutions construct the XORNet evenly for scan chain control, and it may result in sub-optimal solutions without any design guidance. In this paper, we propose a novel testability-aware low power controller with evolutionary learning. The XORNet generated from the proposed genetic algorithm (GA) enables adaptive control for scan chains according to their usages, thereby significantly improving XORNet encoding capacity, reducing the number of failure cases with ATPG and decreasing test data volume. Experimental results indicate that under the same control bits, our GA-guided XORNet design can improve the fault coverage by up to 2.11%. The proposed GA-guided XORNets also allows reducing the number of control bits, and the total testing time decreases by 20.78% on average and up to 47.09% compared to the existing design without sacrificing test coverage.

相關內容

Federated learning (FL) is a rapidly growing privacy-preserving collaborative machine learning paradigm. In practical FL applications, local data from each data silo reflect local usage patterns. Therefore, there exists heterogeneity of data distributions among data owners (a.k.a. FL clients). If not handled properly, this can lead to model performance degradation. This challenge has inspired the research field of heterogeneous federated learning, which currently remains open. In this paper, we propose a data heterogeneity-robust FL approach, FedGSP, to address this challenge by leveraging on a novel concept of dynamic Sequential-to-Parallel (STP) collaborative training. FedGSP assigns FL clients to homogeneous groups to minimize the overall distribution divergence among groups, and increases the degree of parallelism by reassigning more groups in each round. It is also incorporated with a novel Inter-Cluster Grouping (ICG) algorithm to assist in group assignment, which uses the centroid equivalence theorem to simplify the NP-hard grouping problem to make it solvable. Extensive experiments have been conducted on the non-i.i.d. FEMNIST dataset. The results show that FedGSP improves the accuracy by 3.7% on average compared with seven state-of-the-art approaches, and reduces the training time and communication overhead by more than 90%.

This paper presents a framework for learning visual representations from unlabeled video demonstrations captured from multiple viewpoints. We show that these representations are applicable for imitating several robotic tasks, including pick and place. We optimize a recently proposed self-supervised learning algorithm by applying contrastive learning to enhance task-relevant information while suppressing irrelevant information in the feature embeddings. We validate the proposed method on the publicly available Multi-View Pouring and a custom Pick and Place data sets and compare it with the TCN triplet baseline. We evaluate the learned representations using three metrics: viewpoint alignment, stage classification and reinforcement learning, and in all cases the results improve when compared to state-of-the-art approaches, with the added benefit of reduced number of training iterations.

Multi-agent reinforcement learning (MARL) algorithms often suffer from an exponential sample complexity dependence on the number of agents, a phenomenon known as \emph{the curse of multiagents}. In this paper, we address this challenge by investigating sample-efficient model-free algorithms in \emph{decentralized} MARL, and aim to improve existing algorithms along this line. For learning (coarse) correlated equilibria in general-sum Markov games, we propose \emph{stage-based} V-learning algorithms that significantly simplify the algorithmic design and analysis of recent works, and circumvent a rather complicated no-\emph{weighted}-regret bandit subroutine. For learning Nash equilibria in Markov potential games, we propose an independent policy gradient algorithm with a decentralized momentum-based variance reduction technique. All our algorithms are decentralized in that each agent can make decisions based on only its local information. Neither communication nor centralized coordination is required during learning, leading to a natural generalization to a large number of agents. We also provide numerical simulations to corroborate our theoretical findings.

In classical federated learning, the clients contribute to the overall training by communicating local updates for the underlying model on their private data to a coordinating server. However, updating and communicating the entire model becomes prohibitively expensive when resource-constrained clients collectively aim to train a large machine learning model. Split learning provides a natural solution in such a setting, where only a small part of the model is stored and trained on clients while the remaining large part of the model only stays at the servers. However, the model partitioning employed in split learning introduces a significant amount of communication cost. This paper addresses this issue by compressing the additional communication using a novel clustering scheme accompanied by a gradient correction method. Extensive empirical evaluations on image and text benchmarks show that the proposed method can achieve up to $490\times$ communication cost reduction with minimal drop in accuracy, and enables a desirable performance vs. communication trade-off.

Federated Learning (FL) is expected to play a prominent role for privacy-preserving machine learning (ML) in autonomous vehicles. FL involves the collaborative training of a single ML model among edge devices on their distributed datasets while keeping data locally. While FL requires less communication compared to classical distributed learning, it remains hard to scale for large models. In vehicular networks, FL must be adapted to the limited communication resources, the mobility of the edge nodes, and the statistical heterogeneity of data distributions. Indeed, a judicious utilization of the communication resources alongside new perceptive learning-oriented methods are vital. To this end, we propose a new architecture for vehicular FL and corresponding learning and scheduling processes. The architecture utilizes vehicular-to-vehicular(V2V) resources to bypass the communication bottleneck where clusters of vehicles train models simultaneously and only the aggregate of each cluster is sent to the multi-access edge (MEC) server. The cluster formation is adapted for single and multi-task learning, and takes into account both communication and learning aspects. We show through simulations that the proposed process is capable of improving the learning accuracy in several non-independent and-identically-distributed (non-i.i.d) and unbalanced datasets distributions, under mobility constraints, in comparison to standard FL.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

Recently, various auxiliary tasks have been proposed to accelerate representation learning and improve sample efficiency in deep reinforcement learning (RL). However, existing auxiliary tasks do not take the characteristics of RL problems into consideration and are unsupervised. By leveraging returns, the most important feedback signals in RL, we propose a novel auxiliary task that forces the learnt representations to discriminate state-action pairs with different returns. Our auxiliary loss is theoretically justified to learn representations that capture the structure of a new form of state-action abstraction, under which state-action pairs with similar return distributions are aggregated together. In low data regime, our algorithm outperforms strong baselines on complex tasks in Atari games and DeepMind Control suite, and achieves even better performance when combined with existing auxiliary tasks.

Learning structural representations of node sets from graph-structured data is crucial for applications ranging from node-role discovery to link prediction and molecule classification. Graph Neural Networks (GNNs) have achieved great success in structural representation learning. However, most GNNs are limited by the 1-Weisfeiler-Lehman (WL) test and thus possible to generate identical representation for structures and graphs that are actually different. More powerful GNNs, proposed recently by mimicking higher-order-WL tests, only focus on entire-graph representations and cannot utilize sparsity of the graph structure to be computationally efficient. Here we propose a general class of structure-related features, termed Distance Encoding (DE), to assist GNNs in representing node sets with arbitrary sizes with strictly more expressive power than the 1-WL test. DE essentially captures the distance between the node set whose representation is to be learnt and each node in the graph, which includes important graph-related measures such as shortest-path-distance and generalized PageRank scores. We propose two general frameworks for GNNs to use DEs (1) as extra node attributes and (2) further as controllers of message aggregation in GNNs. Both frameworks may still utilize the sparse structure to keep scalability to process large graphs. In theory, we prove that these two frameworks can distinguish node sets embedded in almost all regular graphs where traditional GNNs always fail. We also rigorously analyze their limitations. Empirically, we evaluate these two frameworks on node structural roles prediction, link prediction and triangle prediction over six real networks. The results show that our models outperform GNNs without DEs by up-to 15% improvement in average accuracy and AUC. Our models also significantly outperform other SOTA baselines particularly designed for those tasks.

Autonomous urban driving navigation with complex multi-agent dynamics is under-explored due to the difficulty of learning an optimal driving policy. The traditional modular pipeline heavily relies on hand-designed rules and the pre-processing perception system while the supervised learning-based models are limited by the accessibility of extensive human experience. We present a general and principled Controllable Imitative Reinforcement Learning (CIRL) approach which successfully makes the driving agent achieve higher success rates based on only vision inputs in a high-fidelity car simulator. To alleviate the low exploration efficiency for large continuous action space that often prohibits the use of classical RL on challenging real tasks, our CIRL explores over a reasonably constrained action space guided by encoded experiences that imitate human demonstrations, building upon Deep Deterministic Policy Gradient (DDPG). Moreover, we propose to specialize adaptive policies and steering-angle reward designs for different control signals (i.e. follow, straight, turn right, turn left) based on the shared representations to improve the model capability in tackling with diverse cases. Extensive experiments on CARLA driving benchmark demonstrate that CIRL substantially outperforms all previous methods in terms of the percentage of successfully completed episodes on a variety of goal-directed driving tasks. We also show its superior generalization capability in unseen environments. To our knowledge, this is the first successful case of the learned driving policy through reinforcement learning in the high-fidelity simulator, which performs better-than supervised imitation learning.

This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.

北京阿比特科技有限公司