亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The explosion in the size and the complexity of the available Knowledge Graphs on the web has led to the need for efficient and effective methods for their understanding and exploration. Semantic summaries have recently emerged as methods to quickly explore and understand the contents of various sources. However in most cases they are static not incorporating user needs and preferences and cannot scale. In this paper we present iSummary a novel scalable approach for constructing personalized summaries. As the size and the complexity of the Knowledge Graphs for constructing personalized summaries prohibit efficient summary construction, in our approach we exploit query logs. The main idea behind our approach is to exploit knowledge captured in existing user queries for identifying the most interesting resources and linking them constructing as such highquality personalized summaries. We present an algorithm with theoretical guarantees on the summarys quality linear in the number of queries available in the query log. We evaluate our approach using three realworld datasets and several baselines showing that our approach dominates other methods in terms of both quality and efficiency.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

Large Language Models (LLMs) are trained on large-scale web data, which makes it difficult to grasp the contribution of each text. This poses the risk of leaking inappropriate data such as benchmarks, personal information, and copyrighted texts in the training data. Membership Inference Attacks (MIA), which determine whether a given text is included in the model's training data, have been attracting attention. Previous studies of MIAs revealed that likelihood-based classification is effective for detecting leaks in LLMs. However, the existing methods cannot be applied to some proprietary models like ChatGPT or Claude 3 because the likelihood is unavailable to the user. In this study, we propose a Sampling-based Pseudo-Likelihood (\textbf{SPL}) method for MIA (\textbf{SaMIA}) that calculates SPL using only the text generated by an LLM to detect leaks. The SaMIA treats the target text as the reference text and multiple outputs from the LLM as text samples, calculates the degree of $n$-gram match as SPL, and determines the membership of the text in the training data. Even without likelihoods, SaMIA performed on par with existing likelihood-based methods.

Positioning is a prominent field of study, notably focusing on Visual Inertial Odometry (VIO) and Simultaneous Localization and Mapping (SLAM) methods. Despite their advancements, these methods often encounter dead-reckoning errors that leads to considerable drift in estimated platform motion especially during long traverses. In such cases, the drift error is not negligible and should be rectified. Our proposed approach minimizes the drift error by correcting the estimated motion generated by any SLAM method at each epoch. Our methodology treats positioning measurements rendered by the SLAM solution as random variables formulated jointly in a multivariate distribution. In this setting, The correction of the drift becomes equivalent to finding the mode of this multivariate distribution which jointly maximizes the likelihood of a set of relevant geo-spatial priors about the platform motion and environment. Our method is integrable into any SLAM/VIO method as an correction module. Our experimental results shows the effectiveness of our approach in minimizing the drift error by 10x in long treverses.

Evaluation of Large Language Models (LLMs) is challenging because instruction-following necessitates alignment with human values and the required set of skills varies depending on the instruction. However, previous studies have mainly focused on coarse-grained evaluation (i.e. overall preference-based evaluation), which limits interpretability since it does not consider the nature of user instructions that require instance-wise skill composition. In this paper, we introduce FLASK (Fine-grained Language Model Evaluation based on Alignment Skill Sets), a fine-grained evaluation protocol for both human-based and model-based evaluation which decomposes coarse-level scoring to a skill set-level scoring for each instruction. We experimentally observe that the fine-graininess of evaluation is crucial for attaining a holistic view of model performance and increasing the reliability of the evaluation. Using FLASK, we compare multiple open-source and proprietary LLMs and observe a high correlation between model-based and human-based evaluations. We publicly release the evaluation data and code implementation at //github.com/kaistAI/FLASK.

The integration of Large Language Models (LLMs) and knowledge graphs (KGs) has achieved remarkable success in various natural language processing tasks. However, existing methodologies that integrate LLMs and KGs often navigate the task-solving process solely based on the LLM's analysis of the question, overlooking the rich cognitive potential inherent in the vast knowledge encapsulated in KGs. To address this, we introduce Observation-Driven Agent (ODA), a novel AI agent framework tailored for tasks involving KGs. ODA incorporates KG reasoning abilities via global observation that enhances reasoning capabilities through a cyclical paradigm of observation, action, and reflection. Confronting the exponential explosion of knowledge during observation, we innovatively design a recursive observation mechanism. Subsequently, we integrate the observed knowledge into the action and reflection modules. Through extensive experiments, ODA demonstrates state-of-the-art performance on several datasets, notably achieving accuracy improvements of 12.87% and 8.9%.

In response to the rising threat of the face morphing attack, this paper introduces and explores the potential of Video-based Morphing Attack Detection (V-MAD) systems in real-world operational scenarios. While current morphing attack detection methods primarily focus on a single or a pair of images, V-MAD is based on video sequences, exploiting the video streams often acquired by face verification tools available, for instance, at airport gates. Through this study, we show for the first time the advantages that the availability of multiple probe frames can bring to the morphing attack detection task, especially in scenarios where the quality of probe images is varied and might be affected, for instance, by pose or illumination variations. Experimental results on a real operational database demonstrate that video sequences represent valuable information for increasing the robustness and performance of morphing attack detection systems.

Surrounding perceptions are quintessential for safe driving for connected and autonomous vehicles (CAVs), where the Bird's Eye View has been employed to accurately capture spatial relationships among vehicles. However, severe inherent limitations of BEV, like blind spots, have been identified. Collaborative perception has emerged as an effective solution to overcoming these limitations through data fusion from multiple views of surrounding vehicles. While most existing collaborative perception strategies adopt a fully connected graph predicated on fairness in transmissions, they often neglect the varying importance of individual vehicles due to channel variations and perception redundancy. To address these challenges, we propose a novel Priority-Aware Collaborative Perception (PACP) framework to employ a BEV-match mechanism to determine the priority levels based on the correlation between nearby CAVs and the ego vehicle for perception. By leveraging submodular optimization, we find near-optimal transmission rates, link connectivity, and compression metrics. Moreover, we deploy a deep learning-based adaptive autoencoder to modulate the image reconstruction quality under dynamic channel conditions. Finally, we conduct extensive studies and demonstrate that our scheme significantly outperforms the state-of-the-art schemes by 8.27% and 13.60%, respectively, in terms of utility and precision of the Intersection over Union.

The proliferation of the Internet of Things (IoT) has led to an explosion of data generated by interconnected devices, presenting both opportunities and challenges for intelligent decision-making in complex environments. Traditional Reinforcement Learning (RL) approaches often struggle to fully harness this data due to their limited ability to process and interpret the intricate patterns and dependencies inherent in IoT applications. This paper introduces a novel framework that integrates transformer architectures with Proximal Policy Optimization (PPO) to address these challenges. By leveraging the self-attention mechanism of transformers, our approach enhances RL agents' capacity for understanding and acting within dynamic IoT environments, leading to improved decision-making processes. We demonstrate the effectiveness of our method across various IoT scenarios, from smart home automation to industrial control systems, showing marked improvements in decision-making efficiency and adaptability. Our contributions include a detailed exploration of the transformer's role in processing heterogeneous IoT data, a comprehensive evaluation of the framework's performance in diverse environments, and a benchmark against traditional RL methods. The results indicate significant advancements in enabling RL agents to navigate the complexities of IoT ecosystems, highlighting the potential of our approach to revolutionize intelligent automation and decision-making in the IoT landscape.

We hypothesize that the absence of a standardized benchmark has allowed several fundamental pitfalls in GNN System design and evaluation that the community has overlooked. In this work, we propose GNNBench, a plug-and-play benchmarking platform focused on system innovation. GNNBench presents a new protocol to exchange their captive tensor data, supports custom classes in System APIs, and allows automatic integration of the same system module to many deep learning frameworks, such as PyTorch and TensorFlow. To demonstrate the importance of such a benchmark framework, we integrated several GNN systems. Our results show that integration with GNNBench helped us identify several measurement issues that deserve attention from the community.

Large Language Models (LLMs), such as ChatGPT, are increasingly sophisticated and exhibit capabilities closely resembling those of humans. A significant application of these LLMs is their use as chat agents, responding to human inquiries across various domains. While current LLMs proficiently answer general questions, they often fall short in complex diagnostic scenarios such as legal, medical, or other specialized consultations. These scenarios typically require Task-Oriented Dialogue (TOD), where an AI chat agent must proactively pose questions and guide users toward specific goals or task completion. Previous fine-tuning models have underperformed in TOD and the full potential of this capability in current LLMs has not yet been fully explored. In this paper, we introduce DiagGPT (Dialogue in Diagnosis GPT), an innovative approach that extends LLMs to more TOD scenarios. In addition to guiding users to complete tasks, DiagGPT can effectively manage the status of all topics throughout the dialogue development. This feature enhances user experience and offers a more flexible interaction in TOD. Our experiments demonstrate that DiagGPT exhibits outstanding performance in conducting TOD with users, showing its potential for practical applications in various fields.

The recent integration of Graph Neural Networks (GNNs) into recommendation has led to a novel family of Collaborative Filtering (CF) approaches, namely Graph Collaborative Filtering (GCF). Following the same GNNs wave, recommender systems exploiting Knowledge Graphs (KGs) have also been successfully empowered by the GCF rationale to combine the representational power of GNNs with the semantics conveyed by KGs, giving rise to Knowledge-aware Graph Collaborative Filtering (KGCF), which use KGs to mine hidden user intent. Nevertheless, empirical evidence suggests that computing and combining user-level intent might not always be necessary, as simpler approaches can yield comparable or superior results while keeping explicit semantic features. Under this perspective, user historical preferences become essential to refine the KG and retain the most discriminating features, thus leading to concise item representation. Driven by the assumptions above, we propose KGUF, a KGCF model that learns latent representations of semantic features in the KG to better define the item profile. By leveraging user profiles through decision trees, KGUF effectively retains only those features relevant to users. Results on three datasets justify KGUF's rationale, as our approach is able to reach performance comparable or superior to SOTA methods while maintaining a simpler formalization. Link to the repository: //github.com/sisinflab/KGUF.

北京阿比特科技有限公司