亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In ObjectGoal navigation (ObjectNav), agents must locate specific objects within unseen environments, requiring effective observation, prediction, and navigation capabilities. This study found that traditional methods looking only for prediction accuracy often compromise on computational efficiency. To address this, we introduce "Skip-SCAR," a modular framework that enhances efficiency by leveraging sparsity and adaptive skips. The SparseConv-Augmented ResNet (SCAR) at the core of our approach uses sparse and dense feature processing in parallel, optimizing both the computation and memory footprint. Our adaptive skip technique further reduces computational demands by selectively bypassing unnecessary semantic segmentation steps based on environmental constancy. Tested on the HM3D ObjectNav datasets, Skip-SCAR not only minimizes resource use but also sets new performance benchmarks, demonstrating a robust method for improving efficiency and accuracy in robotic navigation tasks.

相關內容

Large, pretrained latent diffusion models (LDMs) have demonstrated an extraordinary ability to generate creative content, specialize to user data through few-shot fine-tuning, and condition their output on other modalities, such as semantic maps. However, are they usable as large-scale data generators, e.g., to improve tasks in the perception stack, like semantic segmentation? We investigate this question in the context of autonomous driving, and answer it with a resounding "yes". We propose an efficient data generation pipeline termed DGInStyle. First, we examine the problem of specializing a pretrained LDM to semantically-controlled generation within a narrow domain. Second, we propose a Style Swap technique to endow the rich generative prior with the learned semantic control. Third, we design a Multi-resolution Latent Fusion technique to overcome the bias of LDMs towards dominant objects. Using DGInStyle, we generate a diverse dataset of street scenes, train a domain-agnostic semantic segmentation model on it, and evaluate the model on multiple popular autonomous driving datasets. Our approach consistently increases the performance of several domain generalization methods compared to the previous state-of-the-art methods. The source code and the generated dataset are available at //dginstyle.github.io.

Transformers have revolutionized medical image restoration, but the quadratic complexity still poses limitations for their application to high-resolution medical images. The recent advent of RWKV in the NLP field has attracted much attention as it can process long sequences efficiently. To leverage its advanced design, we propose Restore-RWKV, the first RWKV-based model for medical image restoration. Since the original RWKV model is designed for 1D sequences, we make two necessary modifications for modeling spatial relations in 2D images. First, we present a recurrent WKV (Re-WKV) attention mechanism that captures global dependencies with linear computational complexity. Re-WKV incorporates bidirectional attention as basic for a global receptive field and recurrent attention to effectively model 2D dependencies from various scan directions. Second, we develop an omnidirectional token shift (Omni-Shift) layer that enhances local dependencies by shifting tokens from all directions and across a wide context range. These adaptations make the proposed Restore-RWKV an efficient and effective model for medical image restoration. Extensive experiments demonstrate that Restore-RWKV achieves superior performance across various medical image restoration tasks, including MRI image super-resolution, CT image denoising, PET image synthesis, and all-in-one medical image restoration. Code is available at: \href{//github.com/Yaziwel/Restore-RWKV.git}{//github.com/Yaziwel/Restore-RWKV}.

Embodied agents must detect and localize objects of interest, e.g. traffic participants for self-driving cars. Supervision in the form of bounding boxes for this task is extremely expensive. As such, prior work has looked at unsupervised instance detection and segmentation, but in the absence of annotated boxes, it is unclear how pixels must be grouped into objects and which objects are of interest. This results in over-/under-segmentation and irrelevant objects. Inspired by human visual system and practical applications, we posit that the key missing cue for unsupervised detection is motion: objects of interest are typically mobile objects that frequently move and their motions can specify separate instances. In this paper, we propose MOD-UV, a Mobile Object Detector learned from Unlabeled Videos only. We begin with instance pseudo-labels derived from motion segmentation, but introduce a novel training paradigm to progressively discover small objects and static-but-mobile objects that are missed by motion segmentation. As a result, though only learned from unlabeled videos, MOD-UV can detect and segment mobile objects from a single static image. Empirically, we achieve state-of-the-art performance in unsupervised mobile object detection on Waymo Open, nuScenes, and KITTI Datasets without using any external data or supervised models. Code is available at //github.com/YihongSun/MOD-UV.

It is a long-standing problem in robotics to develop agents capable of executing diverse manipulation tasks from visual observations in unstructured real-world environments. To achieve this goal, the robot needs to have a comprehensive understanding of the 3D structure and semantics of the scene. In this work, we present $\textbf{GNFactor}$, a visual behavior cloning agent for multi-task robotic manipulation with $\textbf{G}$eneralizable $\textbf{N}$eural feature $\textbf{F}$ields. GNFactor jointly optimizes a generalizable neural field (GNF) as a reconstruction module and a Perceiver Transformer as a decision-making module, leveraging a shared deep 3D voxel representation. To incorporate semantics in 3D, the reconstruction module utilizes a vision-language foundation model ($\textit{e.g.}$, Stable Diffusion) to distill rich semantic information into the deep 3D voxel. We evaluate GNFactor on 3 real robot tasks and perform detailed ablations on 10 RLBench tasks with a limited number of demonstrations. We observe a substantial improvement of GNFactor over current state-of-the-art methods in seen and unseen tasks, demonstrating the strong generalization ability of GNFactor. Our project website is //yanjieze.com/GNFactor/ .

Inspired by the rapid development of Large Language Models (LLMs), LLM agents have evolved to perform complex tasks. LLM agents are now extensively applied across various domains, handling vast amounts of data to interact with humans and execute tasks. The widespread applications of LLM agents demonstrate their significant commercial value; however, they also expose security and privacy vulnerabilities. At the current stage, comprehensive research on the security and privacy of LLM agents is highly needed. This survey aims to provide a comprehensive overview of the newly emerged privacy and security issues faced by LLM agents. We begin by introducing the fundamental knowledge of LLM agents, followed by a categorization and analysis of the threats. We then discuss the impacts of these threats on humans, environment, and other agents. Subsequently, we review existing defensive strategies, and finally explore future trends. Additionally, the survey incorporates diverse case studies to facilitate a more accessible understanding. By highlighting these critical security and privacy issues, the survey seeks to stimulate future research towards enhancing the security and privacy of LLM agents, thereby increasing their reliability and trustworthiness in future applications.

Persona agents, which are LLM agents that act according to an assigned persona, have demonstrated impressive contextual response capabilities across various applications. These persona agents offer significant enhancements across diverse sectors, such as education, healthcare, and entertainment, where model developers can align agent responses to different user requirements thereby broadening the scope of agent applications. However, evaluating persona agent performance is incredibly challenging due to the complexity of assessing persona adherence in free-form interactions across various environments that are relevant to each persona agent. We introduce PersonaGym, the first dynamic evaluation framework for assessing persona agents, and PersonaScore, the first automated human-aligned metric grounded in decision theory for comprehensive large-scale evaluation of persona agents. Our evaluation of 6 open and closed-source LLMs, using a benchmark encompassing 200 personas and 10,000 questions, reveals significant opportunities for advancement in persona agent capabilities across state-of-the-art models. For example, Claude 3.5 Sonnet only has a 2.97% relative improvement in PersonaScore than GPT 3.5 despite being a much more advanced model. Importantly, we find that increased model size and complexity do not necessarily imply enhanced persona agent capabilities thereby highlighting the pressing need for algorithmic and architectural invention towards faithful and performant persona agents.

While LLM-Based agents, which use external tools to solve complex problems, have made significant progress, benchmarking their ability is challenging, thereby hindering a clear understanding of their limitations. In this paper, we propose an interactive evaluation framework, named CIBench, to comprehensively assess LLMs' ability to utilize code interpreters for data science tasks. Our evaluation framework includes an evaluation dataset and two evaluation modes. The evaluation dataset is constructed using an LLM-human cooperative approach and simulates an authentic workflow by leveraging consecutive and interactive IPython sessions. The two evaluation modes assess LLMs' ability with and without human assistance. We conduct extensive experiments to analyze the ability of 24 LLMs on CIBench and provide valuable insights for future LLMs in code interpreter utilization.

The constructive approach within Neural Combinatorial Optimization (NCO) treats a combinatorial optimization problem as a finite Markov decision process, where solutions are built incrementally through a sequence of decisions guided by a neural policy network. To train the policy, recent research is shifting toward a 'self-improved' learning methodology that addresses the limitations of reinforcement learning and supervised approaches. Here, the policy is iteratively trained in a supervised manner, with solutions derived from the current policy serving as pseudo-labels. The way these solutions are obtained from the policy determines the quality of the pseudo-labels. In this paper, we present a simple and problem-independent sequence decoding method for self-improved learning based on sampling sequences without replacement. We incrementally follow the best solution found and repeat the sampling process from intermediate partial solutions. By modifying the policy to ignore previously sampled sequences, we force it to consider only unseen alternatives, thereby increasing solution diversity. Experimental results for the Traveling Salesman and Capacitated Vehicle Routing Problem demonstrate its strong performance. Furthermore, our method outperforms previous NCO approaches on the Job Shop Scheduling Problem.

Place recognition is a challenging task in computer vision, crucial for enabling autonomous vehicles and robots to navigate previously visited environments. While significant progress has been made in learnable multimodal methods that combine onboard camera images and LiDAR point clouds, the full potential of these methods remains largely unexplored in localization applications. In this paper, we study the impact of leveraging a multi-camera setup and integrating diverse data sources for multimodal place recognition, incorporating explicit visual semantics and text descriptions. Our proposed method named MSSPlace utilizes images from multiple cameras, LiDAR point clouds, semantic segmentation masks, and text annotations to generate comprehensive place descriptors. We employ a late fusion approach to integrate these modalities, providing a unified representation. Through extensive experiments on the Oxford RobotCar and NCLT datasets, we systematically analyze the impact of each data source on the overall quality of place descriptors. Our experiments demonstrate that combining data from multiple sensors significantly improves place recognition model performance compared to single modality approaches and leads to state-of-the-art quality. We also show that separate usage of visual or textual semantics (which are more compact representations of sensory data) can achieve promising results in place recognition. The code for our method is publicly available: //github.com/alexmelekhin/MSSPlace

Most multi-agent reinforcement learning approaches adopt two types of policy optimization methods that either update policy simultaneously or sequentially. Simultaneously updating policies of all agents introduces non-stationarity problem. Although sequentially updating policies agent-by-agent in an appropriate order improves policy performance, it is prone to low efficiency due to sequential execution, resulting in longer model training and execution time. Intuitively, partitioning policies of all agents according to their interdependence and updating joint policy batch-by-batch can effectively balance performance and efficiency. However, how to determine the optimal batch partition of policies and batch updating order are challenging problems. Firstly, a sequential batched policy updating scheme, B2MAPO (Batch by Batch Multi-Agent Policy Optimization), is proposed with a theoretical guarantee of the monotonic incrementally tightened bound. Secondly, a universal modulized plug-and-play B2MAPO hierarchical framework, which satisfies CTDE principle, is designed to conveniently integrate any MARL models to fully exploit and merge their merits, including policy optimality and inference efficiency. Next, a DAG-based B2MAPO algorithm is devised, which is a carefully designed implementation of B2MAPO framework. Comprehensive experimental results conducted on StarCraftII Multi-agent Challenge and Google Football Research demonstrate the performance of DAG-based B2MAPO algorithm outperforms baseline methods. Meanwhile, compared with A2PO, our algorithm reduces the model training and execution time by 60.4% and 78.7%, respectively.

北京阿比特科技有限公司