亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, stochastic parametrizations have been ubiquitous in modelling uncertainty in fluid dynamics models. One source of model uncertainty comes from the coarse graining of the fine-scale data and is in common usage in computational simulations at coarser scales. In this paper, we look at two such stochastic parametrizations: the Stochastic Advection by Lie Transport (SALT) parametrization introduced by Holm and the Location Uncertainty (LU) parametrization introduced by M\'emin. Whilst both parametrizations are available for full-scale models, we study their reduced order versions obtained by projecting them on a complex vector Fourier mode triad of eigenfunctions of the curl. Remarkably, these two parametrizations lead to the same reduced order model, which we term the helicity-preserving stochastic triad (HST). This reduced order model is then compared with an alternative model which preserves the energy of the system, and which is termed the energy preserving stochastic triad (EST). These low-dimensional models are ideal benchmark models for testing new Data Assimilation algorithms: they are easy to implement, exhibit diverse behaviours depending on the choice of the coefficients and come with natural physical properties such as the conservation of energy and helicity.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Extensibility · 無偏估計 · 標量 · 無偏 ·
2023 年 6 月 12 日

Multilevel estimators aim at reducing the variance of Monte Carlo statistical estimators, by combining samples generated with simulators of different costs and accuracies. In particular, the recent work of Schaden and Ullmann (2020) on the multilevel best linear unbiased estimator (MLBLUE) introduces a framework unifying several multilevel and multifidelity techniques. The MLBLUE is reintroduced here using a variance minimization approach rather than the regression approach of Schaden and Ullmann. We then discuss possible extensions of the scalar MLBLUE to a multidimensional setting, i.e. from the expectation of scalar random variables to the expectation of random vectors. Several estimators of increasing complexity are proposed: a) multilevel estimators with scalar weights, b) with element-wise weights, c) with spectral weights and d) with general matrix weights. The computational cost of each method is discussed. We finally extend the MLBLUE to the estimation of second-order moments in the multidimensional case, i.e. to the estimation of covariance matrices. The multilevel estimators proposed are d) a multilevel estimator with scalar weights and e) with element-wise weights. In large-dimension applications such as data assimilation for geosciences, the latter estimator is computationnally unaffordable. As a remedy, we also propose f) a multilevel covariance matrix estimator with optimal multilevel localization, inspired by the optimal localization theory of M\'en\'etrier and Aulign\'e (2015). Some practical details on weighted MLMC estimators of covariance matrices are given in appendix.

This article proposes an efficient numerical method for solving nonlinear stochastic Volterra integral equations using the operational matrices of the Walsh function and the collocation method. In this method, a nonlinear stochastic Volterra integral equation is reduced to a system of algebraic equations, which are then solved to obtain an approximation of the solution. Error analysis has been performed, confirming the effectiveness of the methodology, which results in a linear order of convergence. Examples were computed to demonstrate the efficacy and precision of the method.

Doubly-stochastic point processes model the occurrence of events over a spatial domain as an inhomogeneous Poisson process conditioned on the realization of a random intensity function. They are flexible tools for capturing spatial heterogeneity and dependence. However, implementations of doubly-stochastic spatial models are computationally demanding, often have limited theoretical guarantee, and/or rely on restrictive assumptions. We propose a penalized regression method for estimating covariate effects in doubly-stochastic point processes that is computationally efficient and does not require a parametric form or stationarity of the underlying intensity. We establish the consistency and asymptotic normality of the proposed estimator, and develop a covariance estimator that leads to a conservative statistical inference procedure. A simulation study shows the validity of our approach under less restrictive assumptions on the data generating mechanism, and an application to Seattle crime data demonstrates better prediction accuracy compared with existing alternatives.

Recent successful generative models are trained by fitting a neural network to an a-priori defined tractable probability density path taking noise to training examples. In this paper we investigate the space of Gaussian probability paths, which includes diffusion paths as an instance, and look for an optimal member in some useful sense. In particular, minimizing the Kinetic Energy (KE) of a path is known to make particles' trajectories simple, hence easier to sample, and empirically improve performance in terms of likelihood of unseen data and sample generation quality. We investigate Kinetic Optimal (KO) Gaussian paths and offer the following observations: (i) We show the KE takes a simplified form on the space of Gaussian paths, where the data is incorporated only through a single, one dimensional scalar function, called the \emph{data separation function}. (ii) We characterize the KO solutions with a one dimensional ODE. (iii) We approximate data-dependent KO paths by approximating the data separation function and minimizing the KE. (iv) We prove that the data separation function converges to $1$ in the general case of arbitrary normalized dataset consisting of $n$ samples in $d$ dimension as $n/\sqrt{d}\rightarrow 0$. A consequence of this result is that the Conditional Optimal Transport (Cond-OT) path becomes \emph{kinetic optimal} as $n/\sqrt{d}\rightarrow 0$. We further support this theory with empirical experiments on ImageNet.

Simple stochastic momentum methods are widely used in machine learning optimization, but their good practical performance is at odds with an absence of theoretical guarantees of acceleration in the literature. In this work, we aim to close the gap between theory and practice by showing that stochastic heavy ball momentum retains the fast linear rate of (deterministic) heavy ball momentum on quadratic optimization problems, at least when minibatching with a sufficiently large batch size. The algorithm we study can be interpreted as an accelerated randomized Kaczmarz algorithm with minibatching and heavy ball momentum. The analysis relies on carefully decomposing the momentum transition matrix, and using new spectral norm concentration bounds for products of independent random matrices. We provide numerical illustrations demonstrating that our bounds are reasonably sharp.

We present a framework and algorithms to learn controlled dynamics models using neural stochastic differential equations (SDEs) -- SDEs whose drift and diffusion terms are both parametrized by neural networks. We construct the drift term to leverage a priori physics knowledge as inductive bias, and we design the diffusion term to represent a distance-aware estimate of the uncertainty in the learned model's predictions -- it matches the system's underlying stochasticity when evaluated on states near those from the training dataset, and it predicts highly stochastic dynamics when evaluated on states beyond the training regime. The proposed neural SDEs can be evaluated quickly enough for use in model predictive control algorithms, or they can be used as simulators for model-based reinforcement learning. Furthermore, they make accurate predictions over long time horizons, even when trained on small datasets that cover limited regions of the state space. We demonstrate these capabilities through experiments on simulated robotic systems, as well as by using them to model and control a hexacopter's flight dynamics: A neural SDE trained using only three minutes of manually collected flight data results in a model-based control policy that accurately tracks aggressive trajectories that push the hexacopter's velocity and Euler angles to nearly double the maximum values observed in the training dataset.

We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function (2PCF) on simulated catalogs representative of Luminous Red Galaxies (LRG) data collected during the initial two months of operations of the Stage-IV ground-based Dark Energy Spectroscopic Instrument (DESI). We run the pipeline on multiple extended Zel'dovich (EZ) mock galaxy catalogs with the corresponding cuts applied and compare the results with the mock sample covariance to assess the accuracy and its fluctuations. We propose an extension of the previously developed formalism for catalogs processed with standard reconstruction algorithms. We consider methods for comparing covariance matrices in detail, highlighting their interpretation and statistical properties caused by sample variance, in particular, nontrivial expectation values of certain metrics even when the external covariance estimate is perfect. With improved mocks and validation techniques, we confirm a good agreement between our predictions and sample covariance. This allows one to generate covariance matrices for comparable datasets without the need to create numerous mock galaxy catalogs with matching clustering, only requiring 2PCF measurements from the data itself. The code used in this paper is publicly available at //github.com/oliverphilcox/RascalC.

When repeated evaluations for varying parameter configurations of a high-fidelity physical model are required, surrogate modeling techniques based on model order reduction are desired. In absence of the governing equations describing the dynamics, we need to construct the parametric reduced-order surrogate model in a non-intrusive fashion. In this setting, the usual residual-based error estimate for optimal parameter sampling associated with the reduced basis method is not directly available. Our work provides a non-intrusive optimality criterion to efficiently populate the parameter snapshots, thereby, enabling us to effectively construct a parametric surrogate model. We consider separate parameter-specific proper orthogonal decomposition (POD) subspaces and propose an active-learning-driven surrogate model using kernel-based shallow neural networks, abbreviated as ActLearn-POD-KSNN surrogate model. To demonstrate the validity of our proposed ideas, we present numerical experiments using two physical models, namely Burgers' equation and shallow water equations. Both the models have mixed -- convective and diffusive -- effects within their respective parameter domains, with each of them dominating in certain regions. The proposed ActLearn-POD-KSNN surrogate model efficiently predicts the solution at new parameter locations, even for a setting with multiple interacting shock profiles.

We present a new approach to semiparametric inference using corrected posterior distributions. The method allows us to leverage the adaptivity, regularization and predictive power of nonparametric Bayesian procedures to estimate low-dimensional functionals of interest without being restricted by the holistic Bayesian formalism. Starting from a conventional nonparametric posterior, we target the functional of interest by transforming the entire distribution with a Bayesian bootstrap correction. We provide conditions for the resulting $\textit{one-step posterior}$ to possess calibrated frequentist properties and specialize the results for several canonical examples: the integrated squared density, the mean of a missing-at-random outcome, and the average causal treatment effect on the treated. The procedure is computationally attractive, requiring only a simple, efficient post-processing step that can be attached onto any arbitrary posterior sampling algorithm. Using the ACIC 2016 causal data analysis competition, we illustrate that our approach can outperform the existing state-of-the-art through the propagation of Bayesian uncertainty.

In financial engineering, prices of financial products are computed approximately many times each trading day with (slightly) different parameters in each calculation. In many financial models such prices can be approximated by means of Monte Carlo (MC) simulations. To obtain a good approximation the MC sample size usually needs to be considerably large resulting in a long computing time to obtain a single approximation. In this paper we introduce a new approximation strategy for parametric approximation problems including the parametric financial pricing problems described above. A central aspect of the approximation strategy proposed in this article is to combine MC algorithms with machine learning techniques to, roughly speaking, learn the random variables (LRV) in MC simulations. In other words, we employ stochastic gradient descent (SGD) optimization methods not to train parameters of standard artificial neural networks (ANNs) but to learn random variables appearing in MC approximations. We numerically test the LRV strategy on various parametric problems with convincing results when compared with standard MC simulations, Quasi-Monte Carlo simulations, SGD-trained shallow ANNs, and SGD-trained deep ANNs. Our numerical simulations strongly indicate that the LRV strategy might be capable to overcome the curse of dimensionality in the $L^\infty$-norm in several cases where the standard deep learning approach has been proven not to be able to do so. This is not a contradiction to lower bounds established in the scientific literature because this new LRV strategy is outside of the class of algorithms for which lower bounds have been established in the scientific literature. The proposed LRV strategy is of general nature and not only restricted to the parametric financial pricing problems described above, but applicable to a large class of approximation problems.

北京阿比特科技有限公司