We address the challenges associated with deploying neural networks on CPUs, with a particular focus on minimizing inference time while maintaining accuracy. Our novel approach is to use the dataflow (i.e., computation order) of a neural network to explore data reuse opportunities using heuristic-guided analysis and a code generation framework, which enables exploration of various Single Instruction, Multiple Data (SIMD) implementations to achieve optimized neural network execution. Our results demonstrate that the dataflow that keeps outputs in SIMD registers while also maximizing both input and weight reuse consistently yields the best performance for a wide variety of inference workloads, achieving up to 3x speedup for 8-bit neural networks, and up to 4.8x speedup for binary neural networks, respectively, over the optimized implementations of neural networks today.
Accents, as variations from standard pronunciation, pose significant challenges for speech recognition systems. Although joint automatic speech recognition (ASR) and accent recognition (AR) training has been proven effective in handling multi-accent scenarios, current multi-task ASR-AR approaches overlook the granularity differences between tasks. Fine-grained units capture pronunciation-related accent characteristics, while coarse-grained units are better for learning linguistic information. Moreover, an explicit interaction of two tasks can also provide complementary information and improve the performance of each other, but it is rarely used by existing approaches. In this paper, we propose a novel Decoupling and Interacting Multi-task Network (DIMNet) for joint speech and accent recognition, which is comprised of a connectionist temporal classification (CTC) branch, an AR branch, an ASR branch, and a bottom feature encoder. Specifically, AR and ASR are first decoupled by separated branches and two-granular modeling units to learn task-specific representations. The AR branch is from our previously proposed linguistic-acoustic bimodal AR model and the ASR branch is an encoder-decoder based Conformer model. Then, for the task interaction, the CTC branch provides aligned text for the AR task, while accent embeddings extracted from our AR model are incorporated into the ASR branch's encoder and decoder. Finally, during ASR inference, a cross-granular rescoring method is introduced to fuse the complementary information from the CTC and attention decoder after the decoupling. Our experiments on English and Chinese datasets demonstrate the effectiveness of the proposed model, which achieves 21.45%/28.53% AR accuracy relative improvement and 32.33%/14.55% ASR error rate relative reduction over a published standard baseline, respectively.
As the third-generation neural network, the Spiking Neural Network (SNN) has the advantages of low power consumption and high energy efficiency, making it suitable for implementation on edge devices. More recently, the most advanced SNN, Spikformer, combines the self-attention module from Transformer with SNN to achieve remarkable performance. However, it adopts larger channel dimensions in MLP layers, leading to an increased number of redundant model parameters. To effectively decrease the computational complexity and weight parameters of the model, we explore the Lottery Ticket Hypothesis (LTH) and discover a very sparse ($\ge$90%) subnetwork that achieves comparable performance to the original network. Furthermore, we also design a lightweight token selector module, which can remove unimportant background information from images based on the average spike firing rate of neurons, selecting only essential foreground image tokens to participate in attention calculation. Based on that, we present SparseSpikformer, a co-design framework aimed at achieving sparsity in Spikformer through token and weight pruning techniques. Experimental results demonstrate that our framework can significantly reduce 90% model parameters and cut down Giga Floating-Point Operations (GFLOPs) by 20% while maintaining the accuracy of the original model.
We are introducing Aligned, a platform for global governance and alignment of frontier models, and eventually superintelligence. While previous efforts at the major AI labs have attempted to gather inputs for alignment, these are often conducted behind closed doors. We aim to set the foundation for a more trustworthy, public-facing approach to safety: a constitutional committee framework. Initial tests with 680 participants result in a 30-guideline constitution with 93% overall support. We show the platform naturally scales, instilling confidence and enjoyment from the community. We invite other AI labs and teams to plug and play into the Aligned ecosystem.
Blockchain, a decentralized technology that provides unrivaled security, transparency, and process validation, is redefining the operational landscape across numerous industries. This article focuses on the development of an innovative consortium blockchain based financial distribution application. This paper illuminates the transformative role of blockchain technology in a variety of sectors by drawing on a plethora of academic literature and current industry practices. It demonstrates the diverse applications of blockchain, ranging from remittances to lending and investments in finance to data administration in healthcare and supply chain tracking. The paper reveals the design and potential of a consortium blockchain based application for financial distribution. Utilizing the capabilities of Hyperledger Besu, the application is tailored to improve security, scalability, and interoperability, thereby contributing to a more integrated financial ecosystem. The investigation sheds light on the combination of consortium blockchain controlled access and Hyprledger Besu comprehensive functionality, proposing a secure, transparent, and efficient financial transaction environment. The investigation serves as a resource for academics, industry professionals, and policymakers alike, highlighting the vast potential of blockchain technology, enabled by platforms such as Hyperledger Besu, in accelerating the evolution of traditional systems toward a more decentralized, secure, and efficient future.
Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.
Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.
Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.
With the rise of knowledge graph (KG), question answering over knowledge base (KBQA) has attracted increasing attention in recent years. Despite much research has been conducted on this topic, it is still challenging to apply KBQA technology in industry because business knowledge and real-world questions can be rather complicated. In this paper, we present AliMe-KBQA, a bold attempt to apply KBQA in the E-commerce customer service field. To handle real knowledge and questions, we extend the classic "subject-predicate-object (SPO)" structure with property hierarchy, key-value structure and compound value type (CVT), and enhance traditional KBQA with constraints recognition and reasoning ability. We launch AliMe-KBQA in the Marketing Promotion scenario for merchants during the "Double 11" period in 2018 and other such promotional events afterwards. Online results suggest that AliMe-KBQA is not only able to gain better resolution and improve customer satisfaction, but also becomes the preferred knowledge management method by business knowledge staffs since it offers a more convenient and efficient management experience.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.