Discontinuous Galerkin (DG) methods for solving elliptic equations are gaining popularity in the computational physics community for their high-order spectral convergence and their potential for parallelization on computing clusters. However, problems in numerical relativity with extremely stretched grids, such as initial data problems for binary black holes that impose boundary conditions at large distances from the black holes, have proven challenging for DG methods. To alleviate this problem we have developed a primal DG scheme that is generically applicable to a large class of elliptic equations, including problems on curved and extremely stretched grids. The DG scheme accommodates two widely used initial data formulations in numerical relativity, namely the puncture formulation and the extended conformal thin-sandwich (XCTS) formulation. We find that our DG scheme is able to stretch the grid by a factor of $\sim 10^9$ and hence allows to impose boundary conditions at large distances. The scheme converges exponentially with resolution both for the smooth XCTS problem and for the nonsmooth puncture problem. With this method we are able to generate high-quality initial data for binary black hole problems using a parallelizable DG scheme. The code is publicly available in the open-source SpECTRE numerical relativity code.
Quantum computing has emerged as a promising avenue for achieving significant speedup, particularly in large-scale PDE simulations, compared to classical computing. One of the main quantum approaches involves utilizing Hamiltonian simulation, which is directly applicable only to Schr\"odinger-type equations. To address this limitation, Schr\"odingerisation techniques have been developed, employing the warped transformation to convert general linear PDEs into Schr\"odinger-type equations. However, despite the development of Schr\"odingerisation techniques, the explicit implementation of the corresponding quantum circuit for solving general PDEs remains to be designed. In this paper, we present detailed implementation of a quantum algorithm for general PDEs using Schr\"odingerisation techniques. We provide examples of the heat equation, and the advection equation approximated by the upwind scheme, to demonstrate the effectiveness of our approach. Complexity analysis is also carried out to demonstrate the quantum advantages of these algorithms in high dimensions over their classical counterparts.
We consider the application of the generalized Convolution Quadrature (gCQ) to approximate the solution of an important class of sectorial problems. The gCQ is a generalization of Lubich's Convolution Quadrature (CQ) that allows for variable steps. The available stability and convergence theory for the gCQ requires non realistic regularity assumptions on the data, which do not hold in many applications of interest, such as the approximation of subdiffusion equations. It is well known that for non smooth enough data the original CQ, with uniform steps, presents an order reduction close to the singularity. We generalize the analysis of the gCQ to data satisfying realistic regularity assumptions and provide sufficient conditions for stability and convergence on arbitrary sequences of time points. We consider the particular case of graded meshes and show how to choose them optimally, according to the behaviour of the data. An important advantage of the gCQ method is that it allows for a fast and memory reduced implementation. We describe how the fast and oblivious gCQ can be implemented and illustrate our theoretical results with several numerical experiments.
We develop and analyze stochastic inexact Gauss-Newton methods for nonlinear least-squares problems and inexact Newton methods for nonlinear systems of equations. Random models are formed using suitable sampling strategies for the matrices involved in the deterministic models. The analysis of the expected number of iterations needed in the worst case to achieve a desired level of accuracy in the first-order optimality condition provides guidelines for applying sampling and enforcing, with fixed probability, a suitable accuracy in the random approximations. Results of the numerical validation of the algorithms are presented.
This paper presents a physics-informed deep learning approach for predicting the replicator equation, allowing accurate forecasting of population dynamics. This methodological innovation allows us to derive governing differential or difference equations for systems that lack explicit mathematical models. We used the SINDy model first introduced by Fasel, Kaiser, Kutz, Brunton, and Brunt 2016a to get the replicator equation, which will significantly advance our understanding of evolutionary biology, economic systems, and social dynamics. By refining predictive models across multiple disciplines, including ecology, social structures, and moral behaviours, our work offers new insights into the complex interplay of variables shaping evolutionary outcomes in dynamic systems
This paper presents an optimised algorithm implementing the method of slices for analysing the stability of slopes. The algorithm adopts an improved physically based parameterisation of slip lines according to their geometrical characteristics at the endpoints, which facilitates the identification of all viable failure mechanisms while excluding unrealistic ones. The minimisation routine combines a preliminary discrete calculation of the factor of safety over a coarse grid covering the above parameter space with a subsequent continuous exploration of the most promising region via the simplex optimisation. This reduces computational time up to about 92% compared to conventional approaches that rely on the discrete calculation of the factor of safety over a fine grid covering the entire search space. Significant savings of computational time are observed with respect to recently published heuristic algorithms, which enable a continuous exploration of the entire parametric space. These efficiency gains are particularly advantageous for numerically demanding applications like, for example, the statistical assessment of slopes with uncertain mechanical, hydraulic and geometrical properties. The novel physically based parametrisation of the slip geometry and the adoption of a continuous local search allow exploration of parameter combinations that are necessarily neglected by standard grid-based approaches, leading to an average improvement in accuracy of about 5%.
Many partial differential equations (PDEs) such as Navier--Stokes equations in fluid mechanics, inelastic deformation in solids, and transient parabolic and hyperbolic equations do not have an exact, primal variational structure. Recently, a variational principle based on the dual (Lagrange multiplier) field was proposed. The essential idea in this approach is to treat the given PDE as constraints, and to invoke an arbitrarily chosen auxiliary potential with strong convexity properties to be optimized. This leads to requiring a convex dual functional to be minimized subject to Dirichlet boundary conditions on dual variables, with the guarantee that even PDEs that do not possess a variational structure in primal form can be solved via a variational principle. The vanishing of the first variation of the dual functional is, up to Dirichlet boundary conditions on dual fields, the weak form of the primal PDE problem with the dual-to-primal change of variables incorporated. We derive the dual weak form for the linear, one-dimensional, transient convection-diffusion equation. A Galerkin discretization is used to obtain the discrete equations, with the trial and test functions chosen as linear combination of either RePU activation functions (shallow neural network) or B-spline basis functions; the corresponding stiffness matrix is symmetric. For transient problems, a space-time Galerkin implementation is used with tensor-product B-splines as approximating functions. Numerical results are presented for the steady-state and transient convection-diffusion equation, and transient heat conduction. The proposed method delivers sound accuracy for ODEs and PDEs and rates of convergence are established in the $L^2$ norm and $H^1$ seminorm for the steady-state convection-diffusion problem.
We consider the problem of quantifying how an input perturbation impacts the outputs of large language models (LLMs), a fundamental task for model reliability and post-hoc interpretability. A key obstacle in this domain is disentangling the meaningful changes in model responses from the intrinsic stochasticity of LLM outputs. To overcome this, we introduce Distribution-Based Perturbation Analysis (DBPA), a framework that reformulates LLM perturbation analysis as a frequentist hypothesis testing problem. DBPA constructs empirical null and alternative output distributions within a low-dimensional semantic similarity space via Monte Carlo sampling. Comparisons of Monte Carlo estimates in the reduced dimensionality space enables tractable frequentist inference without relying on restrictive distributional assumptions. The framework is model-agnostic, supports the evaluation of arbitrary input perturbations on any black-box LLM, yields interpretable p-values, supports multiple perturbation testing via controlled error rates, and provides scalar effect sizes for any chosen similarity or distance metric. We demonstrate the effectiveness of DBPA in evaluating perturbation impacts, showing its versatility for perturbation analysis.
Combinatorial problems such as combinatorial optimization and constraint satisfaction problems arise in decision-making across various fields of science and technology. In real-world applications, when multiple optimal or constraint-satisfying solutions exist, enumerating all these solutions -- rather than finding just one -- is often desirable, as it provides flexibility in decision-making. However, combinatorial problems and their enumeration versions pose significant computational challenges due to combinatorial explosion. To address these challenges, we propose enumeration algorithms for combinatorial optimization and constraint satisfaction problems using Ising machines. Ising machines are specialized devices designed to efficiently solve combinatorial problems. Typically, they sample low-cost solutions in a stochastic manner. Our enumeration algorithms repeatedly sample solutions to collect all desirable solutions. The crux of the proposed algorithms is their stopping criteria for sampling, which are derived based on probability theory. In particular, the proposed algorithms have theoretical guarantees that the failure probability of enumeration is bounded above by a user-specified value, provided that lower-cost solutions are sampled more frequently and equal-cost solutions are sampled with equal probability. Many physics-based Ising machines are expected to (approximately) satisfy these conditions. As a demonstration, we applied our algorithm using simulated annealing to maximum clique enumeration on random graphs. We found that our algorithm enumerates all maximum cliques in large dense graphs faster than a conventional branch-and-bound algorithm specially designed for maximum clique enumeration. This demonstrates the promising potential of our proposed approach.
We present an efficient algorithm for the application of sequences of planar rotations to a matrix. Applying such sequences efficiently is important in many numerical linear algebra algorithms for eigenvalues. Our algorithm is novel in three main ways. First, we introduce a new kernel that is optimized for register reuse in a novel way. Second, we introduce a blocking and packing scheme that improves the cache efficiency of the algorithm. Finally, we thoroughly analyze the memory operations of the algorithm which leads to important theoretical insights and makes it easier to select good parameters. Numerical experiments show that our algorithm outperforms the state-of-the-art and achieves a flop rate close to the theoretical peak on modern hardware.
Traditional electrostatic simulation are meshed-based methods which convert partial differential equations into an algebraic system of equations and their solutions are approximated through numerical methods. These methods are time consuming and any changes in their initial or boundary conditions will require solving the numerical problem again. Newer computational methods such as the physics informed neural net (PINN) similarly require re-training when boundary conditions changes. In this work, we propose an end-to-end deep learning approach to model parameter changes to the boundary conditions. The proposed method is demonstrated on the test problem of a long air-filled capacitor structure. The proposed approach is compared to plain vanilla deep learning (NN) and PINN. It is shown that our method can significantly outperform both NN and PINN under dynamic boundary condition as well as retaining its full capability as a forward model.