This paper is about fast slosh free fluid transportation. Existing approaches are either computationally heavy or only suitable for specific robots and container shapes. We model the end effector as a point mass suspended by a spherical pendulum and study the requirements for slosh free motion and the validity of the point mass model. In this approach, slosh free trajectories are generated by controlling the pendulum's pivot and simulating the motion of the point mass. We cast the trajectory optimization problem as a quadratic program; this strategy can be used to obtain valid control inputs. Through simulations and experiments on a 7 DoF Franka Emika Panda robot we validate the effectiveness of the proposed approach.
The application of autonomous UAVs to infrastructure inspection tasks provides benefits in terms of operation time reduction, safety, and cost-effectiveness. This paper presents trajectory planning for three-dimensional autonomous multi-UAV volume coverage and visual inspection of infrastructure based on the Heat Equation Driven Area Coverage (HEDAC) algorithm. The method generates trajectories using a potential field and implements distance fields to prevent collisions and to determine UAVs' camera orientation. It successfully achieves coverage during the visual inspection of complex structures such as a wind turbine and a bridge, outperforming a state-of-the-art method by allowing more surface area to be inspected under the same conditions. The presented trajectory planning method offers flexibility in various setup parameters and is applicable to real-world inspection tasks. Conclusively, the proposed methodology could potentially be applied to different autonomous UAV tasks, or even utilized as a UAV motion control method if its computational efficiency is improved.
Estimating the probability of failure for complex real-world systems using high-fidelity computational models is often prohibitively expensive, especially when the probability is small. Exploiting low-fidelity models can make this process more feasible, but merging information from multiple low-fidelity and high-fidelity models poses several challenges. This paper presents a robust multi-fidelity surrogate modeling strategy in which the multi-fidelity surrogate is assembled using an active learning strategy using an on-the-fly model adequacy assessment set within a subset simulation framework for efficient reliability analysis. The multi-fidelity surrogate is assembled by first applying a Gaussian process correction to each low-fidelity model and assigning a model probability based on the model's local predictive accuracy and cost. Three strategies are proposed to fuse these individual surrogates into an overall surrogate model based on model averaging and deterministic/stochastic model selection. The strategies also dictate which model evaluations are necessary. No assumptions are made about the relationships between low-fidelity models, while the high-fidelity model is assumed to be the most accurate and most computationally expensive model. Through two analytical and two numerical case studies, including a case study evaluating the failure probability of Tristructural isotropic-coated (TRISO) nuclear fuels, the algorithm is shown to be highly accurate while drastically reducing the number of high-fidelity model calls (and hence computational cost).
In recent years, unmanned aerial vehicle (UAV) related technology has expanded knowledge in the area, bringing to light new problems and challenges that require solutions. Furthermore, because the technology allows processes usually carried out by people to be automated, it is in great demand in industrial sectors. The automation of these vehicles has been addressed in the literature, applying different machine learning strategies. Reinforcement learning (RL) is an automation framework that is frequently used to train autonomous agents. RL is a machine learning paradigm wherein an agent interacts with an environment to solve a given task. However, learning autonomously can be time consuming, computationally expensive, and may not be practical in highly-complex scenarios. Interactive reinforcement learning allows an external trainer to provide advice to an agent while it is learning a task. In this study, we set out to teach an RL agent to control a drone using reward-shaping and policy-shaping techniques simultaneously. Two simulated scenarios were proposed for the training; one without obstacles and one with obstacles. We also studied the influence of each technique. The results show that an agent trained simultaneously with both techniques obtains a lower reward than an agent trained using only a policy-based approach. Nevertheless, the agent achieves lower execution times and less dispersion during training.
This paper proposes a graph-based approach to representing spatio-temporal trajectory data that allows an effective visualization and characterization of city-wide traffic dynamics. With the advance of sensor, mobile, and Internet of Things (IoT) technologies, vehicle and passenger trajectories are being increasingly collected on a massive scale and are becoming a critical source of insight into traffic pattern and traveller behaviour. To leverage such trajectory data to better understand traffic dynamics in a large-scale urban network, this study develops a trajectory-based network traffic analysis method that converts individual trajectory data into a sequence of graphs that evolve over time (known as dynamic graphs or time-evolving graphs) and analyses network-wide traffic patterns in terms of a compact and informative graph-representation of aggregated traffic flows. First, we partition the entire network into a set of cells based on the spatial distribution of data points in individual trajectories, where the cells represent spatial regions between which aggregated traffic flows can be measured. Next, dynamic flows of moving objects are represented as a time-evolving graph, where regions are graph vertices and flows between them are treated as weighted directed edges. Given a fixed set of vertices, edges can be inserted or removed at every time step depending on the presence of traffic flows between two regions at a given time window. Once a dynamic graph is built, we apply graph mining algorithms to detect change-points in time, which represent time points where the graph exhibits significant changes in its overall structure and, thus, correspond to change-points in city-wide mobility pattern throughout the day (e.g., global transition points between peak and off-peak periods).
Unmanned aerial vehicles (UAVs) in cellular networks have garnered considerable interest. One of their applications is as flying base stations (FBSs), which can increase coverage and quality of service (QoS). Because FBSs are battery-powered, regulating their energy usage is a vital aspect of their use; and therefore the appropriate placement and trajectories of FBSs throughout their operation are critical to overcoming this challenge. In this paper, we propose a method of solving a multi-FBS 3D trajectory problem that considers FBS energy consumption, operation time, flight distance limits, and inter-cell interference constraints. Our method is divided into two phases: FBS placement and FBS trajectory. In taking this approach, we break the problem into several snapshots. First, we find the minimum number of FBSs required and their proper 3D positions in each snapshot. Then, between every two snapshots, the trajectory phase is executed. The optimal path between the origin and destination of each FBS is determined during the trajectory phase by utilizing a proposed binary linear problem (BLP) model that considers FBS energy consumption and flight distance constraints. Then, the shortest path for each FBS is determined while taking obstacles and collision avoidance into consideration. The number of FBSs needed may vary between snapshots, so we present an FBS set management (FSM) technique to manage the set of FBSs and their power. The results demonstrate that the proposed approach is applicable to real-world situations and that the outcomes are consistent with expectations.
This article proposes a model-based deep reinforcement learning (DRL) method to design emergency control strategies for short-term voltage stability problems in power systems. Recent advances show promising results in model-free DRL-based methods for power systems, but model-free methods suffer from poor sample efficiency and training time, both critical for making state-of-the-art DRL algorithms practically applicable. DRL-agent learns an optimal policy via a trial-and-error method while interacting with the real-world environment. And it is desirable to minimize the direct interaction of the DRL agent with the real-world power grid due to its safety-critical nature. Additionally, state-of-the-art DRL-based policies are mostly trained using a physics-based grid simulator where dynamic simulation is computationally intensive, lowering the training efficiency. We propose a novel model-based-DRL framework where a deep neural network (DNN)-based dynamic surrogate model, instead of a real-world power-grid or physics-based simulation, is utilized with the policy learning framework, making the process faster and sample efficient. However, stabilizing model-based DRL is challenging because of the complex system dynamics of large-scale power systems. We solved these issues by incorporating imitation learning to have a warm start in policy learning, reward-shaping, and multi-step surrogate loss. Finally, we achieved 97.5% sample efficiency and 87.7% training efficiency for an application to the IEEE 300-bus test system.
Sampling-based Model Predictive Control (MPC) is a flexible control framework that can reason about non-smooth dynamics and cost functions. Recently, significant work has focused on the use of machine learning to improve the performance of MPC, often through learning or fine-tuning the dynamics or cost function. In contrast, we focus on learning to optimize more effectively. In other words, to improve the update rule within MPC. We show that this can be particularly useful in sampling-based MPC, where we often wish to minimize the number of samples for computational reasons. Unfortunately, the cost of computational efficiency is a reduction in performance; fewer samples results in noisier updates. We show that we can contend with this noise by learning how to update the control distribution more effectively and make better use of the few samples that we have. Our learned controllers are trained via imitation learning to mimic an expert which has access to substantially more samples. We test the efficacy of our approach on multiple simulated robotics tasks in sample-constrained regimes and demonstrate that our approach can outperform a MPC controller with the same number of samples.
Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.
Multi-label text classification refers to the problem of assigning each given document its most relevant labels from the label set. Commonly, the metadata of the given documents and the hierarchy of the labels are available in real-world applications. However, most existing studies focus on only modeling the text information, with a few attempts to utilize either metadata or hierarchy signals, but not both of them. In this paper, we bridge the gap by formalizing the problem of metadata-aware text classification in a large label hierarchy (e.g., with tens of thousands of labels). To address this problem, we present the MATCH solution -- an end-to-end framework that leverages both metadata and hierarchy information. To incorporate metadata, we pre-train the embeddings of text and metadata in the same space and also leverage the fully-connected attentions to capture the interrelations between them. To leverage the label hierarchy, we propose different ways to regularize the parameters and output probability of each child label by its parents. Extensive experiments on two massive text datasets with large-scale label hierarchies demonstrate the effectiveness of MATCH over state-of-the-art deep learning baselines.
Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.