亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Online questionnaires that use crowd-sourcing platforms to recruit participants have become commonplace, due to their ease of use and low costs. Artificial Intelligence (AI) based Large Language Models (LLM) have made it easy for bad actors to automatically fill in online forms, including generating meaningful text for open-ended tasks. These technological advances threaten the data quality for studies that use online questionnaires. This study tested if text generated by an AI for the purpose of an online study can be detected by both humans and automatic AI detection systems. While humans were able to correctly identify authorship of text above chance level (76 percent accuracy), their performance was still below what would be required to ensure satisfactory data quality. Researchers currently have to rely on the disinterest of bad actors to successfully use open-ended responses as a useful tool for ensuring data quality. Automatic AI detection systems are currently completely unusable. If AIs become too prevalent in submitting responses then the costs associated with detecting fraudulent submissions will outweigh the benefits of online questionnaires. Individual attention checks will no longer be a sufficient tool to ensure good data quality. This problem can only be systematically addressed by crowd-sourcing platforms. They cannot rely on automatic AI detection systems and it is unclear how they can ensure data quality for their paying clients.

相關內容

Emotions lie on a continuum, but current models treat emotions as a finite valued discrete variable. This representation does not capture the diversity in the expression of emotion. To better represent emotions we propose the use of natural language descriptions (or prompts). In this work, we address the challenge of automatically generating these prompts and training a model to better learn emotion representations from audio and prompt pairs. We use acoustic properties that are correlated to emotion like pitch, intensity, speech rate, and articulation rate to automatically generate prompts i.e. 'acoustic prompts'. We use a contrastive learning objective to map speech to their respective acoustic prompts. We evaluate our model on Emotion Audio Retrieval and Speech Emotion Recognition. Our results show that the acoustic prompts significantly improve the model's performance in EAR, in various Precision@K metrics. In SER, we observe a 3.8% relative accuracy improvement on the Ravdess dataset.

The proliferation of Large Language Models (LLMs) has driven considerable interest in fine-tuning them with domain-specific data to create specialized language models. Nevertheless, such domain-specific fine-tuning data often contains sensitive personally identifiable information (PII). Direct fine-tuning LLMs on this data without privacy protection poses a risk of leakage. To address this challenge, we introduce Privacy Protection Language Models (PPLM), a novel paradigm for fine-tuning LLMs that effectively injects domain-specific knowledge while safeguarding data privacy. Our work offers a theoretical analysis for model design and delves into various techniques such as corpus curation, penalty-based unlikelihood in training loss, and instruction-based tuning, etc. Extensive experiments across diverse datasets and scenarios demonstrate the effectiveness of our approaches. In particular, instruction tuning with both positive and negative examples, stands out as a promising method, effectively protecting private data while enhancing the model's knowledge. Our work underscores the potential for Large Language Models as robust privacy protection learners.

Corruptive majority attacks, in which mining power is distributed among miners and an attacker attempts to bribe a majority of miners into participation in a majority attack, pose a threat to blockchains. Budish bounded the cost of bribing miners to participate in an attack by their expected loss as a result of attack success. We show that this bound is loose. In particular, an attack may be structured so that under equilibrium play by most miners, a miner's choice to participate only slightly affects the attack success chance. Combined with the fact that most of the cost of attack success is externalized by any given small miner, this implies that if most mining power is controlled by small miners, bribing miners to participate in such an attack is much cheaper than the Budish bound. We provide a scheme for a cheap corruptive majority attack and discuss practical concerns and consequences.

The efficacy of modern generative models is commonly contingent upon the precision of score estimation along the diffusion path, with a focus on diffusion models and their ability to generate high-quality data samples. This study delves into the application of reverse diffusion to Monte Carlo sampling. It is shown that score estimation can be transformed into a mean estimation problem via the decomposition of the transition kernel. By estimating the mean of the posterior distribution, we derive a novel Monte Carlo sampling algorithm from the reverse diffusion process, which is distinct from traditional Markov Chain Monte Carlo (MCMC) methods. We calculate the error requirements and sample size for the posterior distribution, and use the result to derive an algorithm that can approximate the target distribution to any desired accuracy. Additionally, by estimating the log-Sobolev constant of the posterior distribution, we show under suitable conditions the problem of sampling from the posterior can be easier than direct sampling from the target distribution using traditional MCMC techniques. For Gaussian mixture models, we demonstrate that the new algorithm achieves significant improvement over the traditional Langevin-style MCMC sampling methods both theoretically and practically. Our algorithm offers a new perspective and solution beyond classical MCMC algorithms for challenging complex distributions.

Kinship recognition aims to determine whether the subjects in two facial images are kin or non-kin, which is an emerging and challenging problem. However, most previous methods focus on heuristic designs without considering the spatial correlation between face images. In this paper, we aim to learn discriminative kinship representations embedded with the relation information between face components (e.g., eyes, nose, etc.). To achieve this goal, we propose the Face Componential Relation Network, which learns the relationship between face components among images with a cross-attention mechanism, which automatically learns the important facial regions for kinship recognition. Moreover, we propose Face Componential Relation Network (FaCoRNet), which adapts the loss function by the guidance from cross-attention to learn more discriminative feature representations. The proposed FaCoRNet outperforms previous state-of-the-art methods by large margins for the largest public kinship recognition FIW benchmark.

A Two-Stage approach is described that literally "straighten outs" any potentially nonlinear relationship between a y-outcome variable and each of p = 2 or more potential x-predictor variables. The y-outcome is then predicted from all p of these "linearized" spline-predictors using the form of Generalized Ridge Regression that is most likely to yield minimal MSE risk under Normal distribution-theory. These estimates are then compared and contrasted with those from the Generalized Additive Model that uses the same x-variables.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.

Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司