亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a method for balancing between the Local and Global Structures (LGS) in graph embedding, via a tunable parameter. Some embedding methods aim to capture global structures, while others attempt to preserve local neighborhoods. Few methods attempt to do both, and it is not always possible to capture well both local and global information in two dimensions, which is where most graph drawing live. The choice of using a local or a global embedding for visualization depends not only on the task but also on the structure of the underlying data, which may not be known in advance. For a given graph, LGS aims to find a good balance between the local and global structure to preserve. We evaluate the performance of LGS with synthetic and real-world datasets and our results indicate that it is competitive with the state-of-the-art methods, using established quality metrics such as stress and neighborhood preservation. We introduce a novel quality metric, cluster distance preservation, to assess intermediate structure capture. All source-code, datasets, experiments and analysis are available online.

相關內容

Nested simulation encompasses the estimation of functionals linked to conditional expectations through simulation techniques. In this paper, we treat conditional expectation as a function of the multidimensional conditioning variable and provide asymptotic analyses of general Least Squared Estimators on sieve, without imposing specific assumptions on the function's form. Our study explores scenarios in which the convergence rate surpasses that of the standard Monte Carlo method and the one recently proposed based on kernel ridge regression. We also delve into the conditions that allow for achieving the best possible square root convergence rate among all methods. Numerical experiments are conducted to support our statements.

In the field of Artificial (General) Intelligence (AI), the several recent advancements in Natural language processing (NLP) activities relying on Large Language Models (LLMs) have come to encourage the adoption of LLMs as scientific models of language. While the terminology employed for the characterization of LLMs favors their embracing as such, it is not clear that they are in a place to offer insights into the target system they seek to represent. After identifying the most important theoretical and empirical risks brought about by the adoption of scientific models that lack transparency, we discuss LLMs relating them to every scientific model's fundamental components: the object, the medium, the meaning and the user. We conclude that, at their current stage of development, LLMs hardly offer any explanations for language, and then we provide an outlook for more informative future research directions on this topic.

Vision Transformers (ViTs) are becoming more popular and dominating technique for various vision tasks, compare to Convolutional Neural Networks (CNNs). As a demanding technique in computer vision, ViTs have been successfully solved various vision problems while focusing on long-range relationships. In this paper, we begin by introducing the fundamental concepts and background of the self-attention mechanism. Next, we provide a comprehensive overview of recent top-performing ViT methods describing in terms of strength and weakness, computational cost as well as training and testing dataset. We thoroughly compare the performance of various ViT algorithms and most representative CNN methods on popular benchmark datasets. Finally, we explore some limitations with insightful observations and provide further research direction. The project page along with the collections of papers are available at //github.com/khawar512/ViT-Survey

Legal QA platforms bear the promise to metamorphose the manner in which legal experts engage with jurisprudential documents. In this exposition, we embark on a comparative exploration of contemporary AI frameworks, gauging their adeptness in catering to the unique demands of the Indian legal milieu, with a keen emphasis on Indian Legal Question Answering (AILQA). Our discourse zeroes in on an array of retrieval and QA mechanisms, positioning the OpenAI GPT model as a reference point. The findings underscore the proficiency of prevailing AILQA paradigms in decoding natural language prompts and churning out precise responses. The ambit of this study is tethered to the Indian criminal legal landscape, distinguished by its intricate nature and associated logistical constraints. To ensure a holistic evaluation, we juxtapose empirical metrics with insights garnered from seasoned legal practitioners, thereby painting a comprehensive picture of AI's potential and challenges within the realm of Indian legal QA.

We introduce a univariate signal deconvolution method based on the principles of an approach to Artificial General Intelligence in order to build a general-purpose model of models independent of any arbitrarily assumed prior probability distribution. We investigate how non-random data may encode information about the physical properties, such as dimensions and length scales of the space in which a signal or message may have been originally encoded, embedded, or generated. Our multidimensional space reconstruction method is based on information theory and algorithmic probability, so that it is proven to be agnostic vis-a-vis the arbitrarily chosen encoding-decoding scheme, computable or semi-computable method of approximation to algorithmic complexity, and computational model. The results presented in this paper are useful for applications in coding theory, particularly in zero-knowledge one-way communication channels, such as in deciphering messages from unknown generating sources about which no prior knowledge is available and to which no return message can be sent. We argue that this method has the potential to be of great value in cryptography, signal processing, causal deconvolution, life and technosignature detection.

Realistic physics engines play a crucial role for learning to manipulate deformable objects such as garments in simulation. By doing so, researchers can circumvent challenges such as sensing the deformation of the object in the real-world. In spite of the extensive use of simulations for this task, few works have evaluated the reality gap between deformable object simulators and real-world data. We present a benchmark dataset to evaluate the sim-to-real gap in cloth manipulation. The dataset is collected by performing a dynamic cloth manipulation task involving contact with a rigid table. We use the dataset to evaluate the reality gap, computational time, and simulation stability of four popular deformable object simulators: MuJoCo, Bullet, Flex, and SOFA. Additionally, we discuss the benefits and drawbacks of each simulator. The benchmark dataset is open-source. Supplementary material, videos, and code, can be found at //sites.google.com/view/cloth-sim2real-benchmark.

Our investigation into the Affective Reasoning in Conversation (ARC) task highlights the challenge of causal discrimination. Almost all existing models, including large language models (LLMs), excel at capturing semantic correlations within utterance embeddings but fall short in determining the specific causal relationships. To overcome this limitation, we propose the incorporation of \textit{i.i.d.} noise terms into the conversation process, thereby constructing a structural causal model (SCM). It explores how distinct causal relationships of fitted embeddings can be discerned through independent conditions. To facilitate the implementation of deep learning, we introduce the cogn frameworks to handle unstructured conversation data, and employ an autoencoder architecture to regard the unobservable noise as learnable "implicit causes." Moreover, we curate a synthetic dataset that includes i.i.d. noise. Through comprehensive experiments, we validate the effectiveness and interpretability of our approach. Our code is available in //github.com/Zodiark-ch/mater-of-our-EMNLP2023-paper.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司