亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel image dataset focused on tiny faces wearing face masks for mask classification purposes, dubbed Small Face MASK (SF-MASK), composed of a collection made from 20k low-resolution images exported from diverse and heterogeneous datasets, ranging from 7 x 7 to 64 x 64 pixel resolution. An accurate visualization of this collection, through counting grids, made it possible to highlight gaps in the variety of poses assumed by the heads of the pedestrians. In particular, faces filmed by very high cameras, in which the facial features appear strongly skewed, are absent. To address this structural deficiency, we produced a set of synthetic images which resulted in a satisfactory covering of the intra-class variance. Furthermore, a small subsample of 1701 images contains badly worn face masks, opening to multi-class classification challenges. Experiments on SF-MASK focus on face mask classification using several classifiers. Results show that the richness of SF-MASK (real + synthetic images) leads all of the tested classifiers to perform better than exploiting comparative face mask datasets, on a fixed 1077 images testing set. Dataset and evaluation code are publicly available here: //github.com/HumaticsLAB/sf-mask

相關內容

This paper presents a scalable multi-robot motion planning algorithm called Conflict-Based Model Predictive Control (CB-MPC). Inspired by Conflict-Based Search (CBS), the planner leverages a similar high-level conflict tree to efficiently resolve robot-robot conflicts in the continuous space, while reasoning about each agent's kinematic and dynamic constraints and actuation limits using MPC as the low-level planner. We show that tracking high-level multi-robot plans with a vanilla MPC controller is insufficient, and results in unexpected collisions in tight navigation scenarios. Compared to other variations of multi-robot MPC like joint, prioritized, and distributed, we demonstrate that CB-MPC improves the executability and success rate, allows for closer robot-robot interactions, and reduces the computational cost significantly without compromising the solution quality across a variety of environments. Furthermore, we show that CB-MPC combined with a high-level path planner can effectively substitute computationally expensive full-horizon multi-robot kinodynamic planners.

Effective aggregation of temporal information of consecutive frames is the core of achieving video super-resolution. Many scholars have utilized structures such as sliding windows and recurrent to gather spatio-temporal information of frames. However, although the performance of the constructed VSR models is improving, the size of the models is also increasing, exacerbating the demand on the equipment. Thus, to reduce the stress on the device, we propose a novel lightweight recurrent grouping attention network. The parameters of this model are only 0.878M, which is much lower than the current mainstream model for studying video super-resolution. We design forward feature extraction module and backward feature extraction module to collect temporal information between consecutive frames from two directions. Moreover, a new grouping mechanism is proposed to efficiently collect spatio-temporal information of the reference frame and its neighboring frames. The attention supplementation module is presented to further enhance the information gathering range of the model. The feature reconstruction module aims to aggregate information from different directions to reconstruct high-resolution features. Experiments demonstrate that our model achieves state-of-the-art performance on multiple datasets.

Graph Neural Networks (GNNs) have achieved promising performance in a variety of graph-focused tasks. Despite their success, existing GNNs suffer from two significant limitations: a lack of interpretability in results due to their black-box nature, and an inability to learn representations of varying orders. To tackle these issues, we propose a novel Model-agnostic Graph Neural Network (MaGNet) framework, which is able to sequentially integrate information of various orders, extract knowledge from high-order neighbors, and provide meaningful and interpretable results by identifying influential compact graph structures. In particular, MaGNet consists of two components: an estimation model for the latent representation of complex relationships under graph topology, and an interpretation model that identifies influential nodes, edges, and important node features. Theoretically, we establish the generalization error bound for MaGNet via empirical Rademacher complexity, and showcase its power to represent layer-wise neighborhood mixing. We conduct comprehensive numerical studies using simulated data to demonstrate the superior performance of MaGNet in comparison to several state-of-the-art alternatives. Furthermore, we apply MaGNet to a real-world case study aimed at extracting task-critical information from brain activity data, thereby highlighting its effectiveness in advancing scientific research.

We present a novel approach to robust pose graph optimization based on Graduated Non-Convexity (GNC). Unlike traditional GNC-based methods, the proposed approach employs an adaptive shape function using B-spline to optimize the shape of the robust kernel. This aims to reduce GNC iterations, boosting computational speed without compromising accuracy. When integrated with the open-source riSAM algorithm, the method demonstrates enhanced efficiency across diverse datasets. Accompanying open-source code aims to encourage further research in this area. //github.com/SNU-DLLAB/AGNC-PGO

Large Language Models (LLMs) have demonstrated impressive zero shot performance on a wide range of NLP tasks, demonstrating the ability to reason and apply commonsense. A relevant application is to use them for creating high quality synthetic datasets for downstream tasks. In this work, we probe whether GPT-4 can be used to augment existing extractive reading comprehension datasets. Automating data annotation processes has the potential to save large amounts of time, money and effort that goes into manually labelling datasets. In this paper, we evaluate the performance of GPT-4 as a replacement for human annotators for low resource reading comprehension tasks, by comparing performance after fine tuning, and the cost associated with annotation. This work serves to be the first analysis of LLMs as synthetic data augmenters for QA systems, highlighting the unique opportunities and challenges. Additionally, we release augmented versions of low resource datasets, that will allow the research community to create further benchmarks for evaluation of generated datasets.

This paper presents a Hierarchical Reinforcement Learning methodology tailored for optimizing CubeSat task scheduling in Low Earth Orbits (LEO). Incorporating a high-level policy for global task distribution and a low-level policy for real-time adaptations as a safety mechanism, our approach integrates the Similarity Attention-based Encoder (SABE) for task prioritization and an MLP estimator for energy consumption forecasting. Integrating this mechanism creates a safe and fault-tolerant system for CubeSat task scheduling. Simulation results validate the Hierarchical Reinforcement Learning superior convergence and task success rate, outperforming both the MADDPG model and traditional random scheduling across multiple CubeSat configurations.

Multimodal Large Language Model (MLLM) recently has been a new rising research hotspot, which uses powerful Large Language Models (LLMs) as a brain to perform multimodal tasks. The surprising emergent capabilities of MLLM, such as writing stories based on images and OCR-free math reasoning, are rare in traditional methods, suggesting a potential path to artificial general intelligence. In this paper, we aim to trace and summarize the recent progress of MLLM. First of all, we present the formulation of MLLM and delineate its related concepts. Then, we discuss the key techniques and applications, including Multimodal Instruction Tuning (M-IT), Multimodal In-Context Learning (M-ICL), Multimodal Chain of Thought (M-CoT), and LLM-Aided Visual Reasoning (LAVR). Finally, we discuss existing challenges and point out promising research directions. In light of the fact that the era of MLLM has only just begun, we will keep updating this survey and hope it can inspire more research. An associated GitHub link collecting the latest papers is available at //github.com/BradyFU/Awesome-Multimodal-Large-Language-Models.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm

北京阿比特科技有限公司