We consider the problem of clustering data points coming from sub-Gaussian mixtures. Existing methods that provably achieve the optimal mislabeling error, such as the Lloyd algorithm, are usually vulnerable to outliers. In contrast, clustering methods seemingly robust to adversarial perturbations are not known to satisfy the optimal statistical guarantees. We propose a simple algorithm that obtains the optimal mislabeling rate even when we allow adversarial outliers to be present. Our algorithm achieves the optimal error rate in constant iterations when a weak initialization condition is satisfied. In the absence of outliers, in fixed dimensions, our theoretical guarantees are similar to that of the Lloyd algorithm. Extensive experiments on various simulated data sets are conducted to support the theoretical guarantees of our method.
Despite its importance for insurance, there is almost no literature on statistical hail damage modeling. Statistical models for hailstorms exist, though they are generally not open-source, but no study appears to have developed a stochastic hail impact function. In this paper, we use hail-related insurance claim data to build a Gaussian line process with extreme marks to model both the geographical footprint of a hailstorm and the damage to buildings that hailstones can cause. We build a model for the claim counts and claim values, and compare it to the use of a benchmark deterministic hail impact function. Our model proves to be better than the benchmark at capturing hail spatial patterns and allows for localized and extreme damage, which is seen in the insurance data. The evaluation of both the claim counts and value predictions shows that performance is improved compared to the benchmark, especially for extreme damage. Our model appears to be the first to provide realistic estimates for hail damage to individual buildings.
Linear statistics of point processes yield Monte Carlo estimators of integrals. While the simplest approach relies on a homogeneous Poisson point process, more regularly spread point processes, such as scrambled low-discrepancy sequences or determinantal point processes, can yield Monte Carlo estimators with fast-decaying mean square error. Following the intuition that more regular configurations result in lower integration error, we introduce the repulsion operator, which reduces clustering by slightly pushing the points of a configuration away from each other. Our main theoretical result is that applying the repulsion operator to a homogeneous Poisson point process yields an unbiased Monte Carlo estimator with lower variance than under the original point process. On the computational side, the evaluation of our estimator is only quadratic in the number of integrand evaluations and can be easily parallelized without any communication across tasks. We illustrate our variance reduction result with numerical experiments and compare it to popular Monte Carlo methods. Finally, we numerically investigate a few open questions on the repulsion operator. In particular, the experiments suggest that the variance reduction also holds when the operator is applied to other motion-invariant point processes.
Compared to widely used likelihood-based approaches, the minimum contrast (MC) method is a computationally efficient method for estimation and inference of parametric stationary point processes. This advantage becomes more pronounced when analyzing complex point process models, such as multivariate log-Gaussian Cox processes (LGCP). Despite its practical advantages, there is very little work on the MC method for multivariate point processes. The aim of this article is to introduce a new MC method for parametric multivariate stationary spatial point processes. A contrast function is calculated based on the trace of the power of the difference between the conjectured $K$-function matrix and its nonparametric unbiased edge-corrected estimator. Under standard assumptions, the asymptotic normality of the MC estimator of the model parameters is derived. The performance of the proposed method is illustrated with bivariate LGCP simulations and a real data analysis of a bivariate point pattern of the 2014 terrorist attacks in Nigeria.
Stochastic inversion problems are typically encountered when it is wanted to quantify the uncertainty affecting the inputs of computer models. They consist in estimating input distributions from noisy, observable outputs, and such problems are increasingly examined in Bayesian contexts where the targeted inputs are affected by stochastic uncertainties. In this regard, a stochastic input can be qualified as meaningful if it explains most of the output uncertainty. While such inverse problems are characterized by identifiability conditions, constraints of "signal to noise", that can formalize this meaningfulness, should be accounted for within the definition of the model, prior to inference. This article investigates the possibility of forcing a solution to be meaningful in the context of parametric uncertainty quantification, through the tools of global sensitivity analysis and information theory (variance, entropy, Fisher information). Such forcings have mainly the nature of constraints placed on the input covariance, and can be made explicit by considering linear or linearizable models. Simulated experiments indicate that, when injected into the modeling process, these constraints can limit the influence of measurement or process noise on the estimation of the input distribution, and let hope for future extensions in a full non-linear framework, for example through the use of linear Gaussian mixtures.
This article revisits the fundamental problem of parameter selection for Gaussian process interpolation. By choosing the mean and the covariance functions of a Gaussian process within parametric families, the user obtains a family of Bayesian procedures to perform predictions about the unknown function, and must choose a member of the family that will hopefully provide good predictive performances. We base our study on the general concept of scoring rules, which provides an effective framework for building leave-one-out selection and validation criteria, and a notion of extended likelihood criteria based on an idea proposed by Fasshauer and co-authors in 2009, which makes it possible to recover standard selection criteria such as, for instance, the generalized cross-validation criterion. Under this setting, we empirically show on several test problems of the literature that the choice of an appropriate family of models is often more important than the choice of a particular selection criterion (e.g., the likelihood versus a leave-one-out selection criterion). Moreover, our numerical results show that the regularity parameter of a Mat{\'e}rn covariance can be selected effectively by most selection criteria.
Estimating causal effects from observational network data is a significant but challenging problem. Existing works in causal inference for observational network data lack an analysis of the generalization bound, which can theoretically provide support for alleviating the complex confounding bias and practically guide the design of learning objectives in a principled manner. To fill this gap, we derive a generalization bound for causal effect estimation in network scenarios by exploiting 1) the reweighting schema based on joint propensity score and 2) the representation learning schema based on Integral Probability Metric (IPM). We provide two perspectives on the generalization bound in terms of reweighting and representation learning, respectively. Motivated by the analysis of the bound, we propose a weighting regression method based on the joint propensity score augmented with representation learning. Extensive experimental studies on two real-world networks with semi-synthetic data demonstrate the effectiveness of our algorithm.
The purpose of this paper is to introduce a new numerical method to solve multi-marginal optimal transport problems with pairwise interaction costs. The complexity of multi-marginal optimal transport generally scales exponentially in the number of marginals $m$. We introduce a one parameter family of cost functions that interpolates between the original and a special cost function for which the problem's complexity scales linearly in $m$. We then show that the solution to the original problem can be recovered by solving an ordinary differential equation in the parameter $\epsilon$, whose initial condition corresponds to the solution for the special cost function mentioned above; we then present some simulations, using both explicit Euler and explicit higher order Runge-Kutta schemes to compute solutions to the ODE, and, as a result, the multi-marginal optimal transport problem.
This paper addresses the problem of providing robust estimators under a functional logistic regression model. Logistic regression is a popular tool in classification problems with two populations. As in functional linear regression, regularization tools are needed to compute estimators for the functional slope. The traditional methods are based on dimension reduction or penalization combined with maximum likelihood or quasi--likelihood techniques and for that reason, they may be affected by misclassified points especially if they are associated to functional covariates with atypical behaviour. The proposal given in this paper adapts some of the best practices used when the covariates are finite--dimensional to provide reliable estimations. Under regularity conditions, consistency of the resulting estimators and rates of convergence for the predictions are derived. A numerical study illustrates the finite sample performance of the proposed method and reveals its stability under different contamination scenarios. A real data example is also presented.
Partially linear additive models generalize linear ones since they model the relation between a response variable and covariates by assuming that some covariates have a linear relation with the response but each of the others enter through unknown univariate smooth functions. The harmful effect of outliers either in the residuals or in the covariates involved in the linear component has been described in the situation of partially linear models, that is, when only one nonparametric component is involved in the model. When dealing with additive components, the problem of providing reliable estimators when atypical data arise, is of practical importance motivating the need of robust procedures. Hence, we propose a family of robust estimators for partially linear additive models by combining $B-$splines with robust linear regression estimators. We obtain consistency results, rates of convergence and asymptotic normality for the linear components, under mild assumptions. A Monte Carlo study is carried out to compare the performance of the robust proposal with its classical counterpart under different models and contamination schemes. The numerical experiments show the advantage of the proposed methodology for finite samples. We also illustrate the usefulness of the proposed approach on a real data set.
Kinetic approaches are generally accurate in dealing with microscale plasma physics problems but are computationally expensive for large-scale or multiscale systems. One of the long-standing problems in plasma physics is the integration of kinetic physics into fluid models, which is often achieved through sophisticated analytical closure terms. In this paper, we successfully construct a multi-moment fluid model with an implicit fluid closure included in the neural network using machine learning. The multi-moment fluid model is trained with a small fraction of sparsely sampled data from kinetic simulations of Landau damping, using the physics-informed neural network (PINN) and the gradient-enhanced physics-informed neural network (gPINN). The multi-moment fluid model constructed using either PINN or gPINN reproduces the time evolution of the electric field energy, including its damping rate, and the plasma dynamics from the kinetic simulations. In addition, we introduce a variant of the gPINN architecture, namely, gPINN$p$ to capture the Landau damping process. Instead of including the gradients of all the equation residuals, gPINN$p$ only adds the gradient of the pressure equation residual as one additional constraint. Among the three approaches, the gPINN$p$-constructed multi-moment fluid model offers the most accurate results. This work sheds light on the accurate and efficient modeling of large-scale systems, which can be extended to complex multiscale laboratory, space, and astrophysical plasma physics problems.