亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For some classification scenarios, it is desirable to use only those classification instances that a trained model associates with a high certainty. To obtain such high-certainty instances, previous work has proposed accuracy-reject curves. Reject curves allow to evaluate and compare the performance of different certainty measures over a range of thresholds for accepting or rejecting classifications. However, the accuracy may not be the most suited evaluation metric for all applications, and instead precision or recall may be preferable. This is the case, for example, for data with imbalanced class distributions. We therefore propose reject curves that evaluate precision and recall, the recall-reject curve and the precision-reject curve. Using prototype-based classifiers from learning vector quantization, we first validate the proposed curves on artificial benchmark data against the accuracy reject curve as a baseline. We then show on imbalanced benchmarks and medical, real-world data that for these scenarios, the proposed precision- and recall-curves yield more accurate insights into classifier performance than accuracy reject curves.

相關內容

Statically analyzing dynamically-typed code is a challenging endeavor, as even seemingly trivial tasks such as determining the targets of procedure calls are non-trivial without knowing the types of objects at compile time. Addressing this challenge, gradual typing is increasingly added to dynamically-typed languages, a prominent example being TypeScript that introduces static typing to JavaScript. Gradual typing improves the developer's ability to verify program behavior, contributing to robust, secure and debuggable programs. In practice, however, users only sparsely annotate types directly. At the same time, conventional type inference faces performance-related challenges as program size grows. Statistical techniques based on machine learning offer faster inference, but although recent approaches demonstrate overall improved accuracy, they still perform significantly worse on user-defined types than on the most common built-in types. Limiting their real-world usefulness even more, they rarely integrate with user-facing applications. We propose CodeTIDAL5, a Transformer-based model trained to reliably predict type annotations. For effective result retrieval and re-integration, we extract usage slices from a program's code property graph. Comparing our approach against recent neural type inference systems, our model outperforms the current state-of-the-art by 7.85% on the ManyTypes4TypeScript benchmark, achieving 71.27% accuracy overall. Furthermore, we present JoernTI, an integration of our approach into Joern, an open source static analysis tool, and demonstrate that the analysis benefits from the additional type information. As our model allows for fast inference times even on commodity CPUs, making our system available through Joern leads to high accessibility and facilitates security research.

A method is introduced for approximate marginal likelihood inference via adaptive Gaussian quadrature in mixed models with a single grouping factor. The core technical contribution is an algorithm for computing the exact gradient of the approximate log marginal likelihood. This leads to efficient maximum likelihood via quasi-Newton optimization that is demonstrated to be faster than existing approaches based on finite-differenced gradients or derivative-free optimization. The method is specialized to Bernoulli mixed models with multivariate, correlated Gaussian random effects; here computations are performed using an inverse log-Cholesky parameterization of the Gaussian density that involves no matrix decomposition during model fitting, while Wald confidence intervals are provided for variance parameters on the original scale. Simulations give evidence of these intervals attaining nominal coverage if enough quadrature points are used, for data comprised of a large number of very small groups exhibiting large between-group heterogeneity. In contrast, the Laplace approximation is shown to give especially poor coverage and high bias for data comprised of a large number of small groups. Adaptive quadrature mitigates this, and the methods in this paper improve the computational feasibility of this more accurate method. All results may be reproduced using code available at \url{//github.com/awstringer1/aghmm-paper-code}.

Carbon footprint quantification is key to well-informed decision making over carbon reduction potential, both for individuals and for companies. Many carbon footprint case studies for products and services have been circulated recently. Due to the complex relationships within each scenario, however, the underlying assumptions often are difficult to understand. Also, re-using and adapting a scenario to local or individual circumstances is not a straightforward task. To overcome these challenges, we propose an open and linked data model for carbon footprint scenarios which improves data quality and transparency by design. We demonstrate the implementation of our idea with a web-based data interpreter prototype.

Given fruitful works in the image monitoring, there is a lack of data-driven tools guiding the practitioners to select proper monitoring procedures. The potential model mismatch caused by the arbitrary selection could deviate the empirical detection delay from their theoretical analysis and bias the prognosis. In the image monitoring, the sparsity of the underlying anomaly is one of the attributes on which the development of many monitoring procedures is highly based. This paper proposes a computational-friendly sparsity index, the corrected Hoyer index, to estimate the sparsity of the underlying anomaly interrupted by noise. We theoretically prove the consistency of the constructed sparsity index. We use simulations to validate the consistency and demonstrate the robustness against the noise. We also provide the insights on how to guide the real applications with the proposed sparsity index.

Given a set of points of interest, a volumetric spanner is a subset of the points using which all the points can be expressed using "small" coefficients (measured in an appropriate norm). Formally, given a set of vectors $X = \{v_1, v_2, \dots, v_n\}$, the goal is to find $T \subseteq [n]$ such that every $v \in X$ can be expressed as $\sum_{i\in T} \alpha_i v_i$, with $\|\alpha\|$ being small. This notion, which has also been referred to as a well-conditioned basis, has found several applications, including bandit linear optimization, determinant maximization, and matrix low rank approximation. In this paper, we give almost optimal bounds on the size of volumetric spanners for all $\ell_p$ norms, and show that they can be constructed using a simple local search procedure. We then show the applications of our result to other tasks and in particular the problem of finding coresets for the Minimum Volume Enclosing Ellipsoid (MVEE) problem.

While federated learning (FL) has recently emerged as a promising approach to train machine learning models, it is limited to only preliminary explorations in the domain of automatic speech recognition (ASR). Moreover, FL does not inherently guarantee user privacy and requires the use of differential privacy (DP) for robust privacy guarantees. However, we are not aware of prior work on applying DP to FL for ASR. In this paper, we aim to bridge this research gap by formulating an ASR benchmark for FL with DP and establishing the first baselines. First, we extend the existing research on FL for ASR by exploring different aspects of recent $\textit{large end-to-end transformer models}$: architecture design, seed models, data heterogeneity, domain shift, and impact of cohort size. With a $\textit{practical}$ number of central aggregations we are able to train $\textbf{FL models}$ that are \textbf{nearly optimal} even with heterogeneous data, a seed model from another domain, or no pre-trained seed model. Second, we apply DP to FL for ASR, which is non-trivial since DP noise severely affects model training, especially for large transformer models, due to highly imbalanced gradients in the attention block. We counteract the adverse effect of DP noise by reviving per-layer clipping and explaining why its effect is more apparent in our case than in the prior work. Remarkably, we achieve user-level ($7.2$, $10^{-9}$)-$\textbf{DP}$ (resp. ($4.5$, $10^{-9}$)-$\textbf{DP}$) with a 1.3% (resp. 4.6%) absolute drop in the word error rate for extrapolation to high (resp. low) population scale for $\textbf{FL with DP in ASR}$.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司