Adversarial training is often formulated as a min-max problem, however, concentrating only on the worst adversarial examples causes alternating repetitive confusion of the model, i.e., previously defended or correctly classified samples are not defensible or accurately classifiable in subsequent adversarial training. We characterize such non-ignorable samples as "hiders", which reveal the hidden high-risk regions within the secure area obtained through adversarial training and prevent the model from finding the real worst cases. We demand the model to prevent hiders when defending against adversarial examples for improving accuracy and robustness simultaneously. By rethinking and redefining the min-max optimization problem for adversarial training, we propose a generalized adversarial training algorithm called Hider-Focused Adversarial Training (HFAT). HFAT introduces the iterative evolution optimization strategy to simplify the optimization problem and employs an auxiliary model to reveal hiders, effectively combining the optimization directions of standard adversarial training and prevention hiders. Furthermore, we introduce an adaptive weighting mechanism that facilitates the model in adaptively adjusting its focus between adversarial examples and hiders during different training periods. We demonstrate the effectiveness of our method based on extensive experiments, and ensure that HFAT can provide higher robustness and accuracy.
Mixed Reality (MR) is gaining prominence in manual task skill learning due to its in-situ, embodied, and immersive experience. To teach manual tasks, current methodologies break the task into hierarchies (tasks into subtasks) and visualize the current subtask and future in terms of causality. Existing psychology literature also shows that humans learn tasks by breaking them into hierarchies. In order to understand the design space of information visualized to the learner for better task understanding, we conducted a user study with 48 users. The study was conducted using a complex assembly task, which involves learning of both actions and tool usage. We aim to explore the effect of visualization of causality in the hierarchy for manual task learning in MR by four options: no causality, event level causality, interaction level causality, and gesture level causality. The results show that the user understands and performs best when all the level of causality is shown to the user. Based on the results, we further provide design recommendations and in-depth discussions for future manual task learning systems.
Minor errors in the spoil deposition process, such as placing stronger materials with higher shear strength over weaker ones, can lead to potential dump failure. Irregular deposition and inadequate compaction complicate coal spoil behaviour, necessitating a robust methodology for temporal monitoring. This study explores using unmanned aerial vehicles (UAV) equipped with red-green-blue (RGB) sensors for efficient data acquisition. Despite their prevalence, raw UAV data exhibit temporal inconsistency, hindering accurate assessments of changes over time. This is attributed to radiometric errors in UAV-based sensing arising from factors such as sensor noise, atmospheric scattering and absorption, variations in sun parameters, and variable characteristics of the sensed object over time. To this end, the study introduces an empirical line calibration with invariant targets, for precise calibration across diverse scenes. Calibrated RGB data exhibit a substantial performance advantage, achieving a 90.7% overall accuracy for spoil pile classification using ensemble (subspace discriminant), representing a noteworthy 7% improvement compared to classifying uncalibrated data. The study highlights the critical role of data calibration in optimising UAV effectiveness for spatio-temporal mine dump monitoring. The developed calibration workflow proves robust and reliable across multiple dates. Consequently, these findings play a crucial role in informing and refining sustainable management practices within the domain of mine waste management.
Communication with the goal of accurately conveying meaning, rather than accurately transmitting symbols, has become an area of growing interest. This paradigm, termed semantic communication, typically leverages modern developments in artificial intelligence and machine learning to improve the efficiency and robustness of communication systems. However, a standard model for capturing and quantifying the details of "meaning" is lacking, with many leading approaches to semantic communication adopting a black-box framework with little understanding of what exactly the model is learning. One solution is to utilize the conceptual spaces framework, which models meaning explicitly in a geometric manner. Though prior work studying semantic communication with conceptual spaces has shown promising results, these previous attempts involve hand-crafting a conceptual space model, severely limiting the scalability and practicality of the approach. In this work, we develop a framework for learning a domain of a conceptual space model using only the raw data with high-level property labels. In experiments using the MNIST and CelebA datasets, we show that the domains learned using the framework maintain semantic similarity relations and possess interpretable dimensions.
Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
The goal of few-shot learning is to learn a classifier that generalizes well even when trained with a limited number of training instances per class. The recently introduced meta-learning approaches tackle this problem by learning a generic classifier across a large number of multiclass classification tasks and generalizing the model to a new task. Yet, even with such meta-learning, the low-data problem in the novel classification task still remains. In this paper, we propose Transductive Propagation Network (TPN), a novel meta-learning framework for transductive inference that classifies the entire test set at once to alleviate the low-data problem. Specifically, we propose to learn to propagate labels from labeled instances to unlabeled test instances, by learning a graph construction module that exploits the manifold structure in the data. TPN jointly learns both the parameters of feature embedding and the graph construction in an end-to-end manner. We validate TPN on multiple benchmark datasets, on which it largely outperforms existing few-shot learning approaches and achieves the state-of-the-art results.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.