亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present a new analytical 3D placement framework with a bistratal wirelength model for F2F-bonded 3D ICs with heterogeneous technology nodes based on the electrostatic-based density model. The proposed framework, enabled GPU-acceleration, is capable of efficiently determining node partitioning and locations simultaneously, leveraging the dedicated 3D wirelength model and density model. The experimental results on ICCAD 2022 contest benchmarks demonstrate that our proposed 3D placement framework can achieve up to 6.1% wirelength improvement and 4.1% on average compared to the first-place winner with much fewer vertical interconnections and up to 9.8x runtime speedup. Notably, the proposed framework also outperforms the state-of-the-art 3D analytical placer by up to 3.3% wirelength improvement and 2.1% on average with up to 8.8x acceleration on large cases using GPUs.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 回合 · 機器人 · 粒子群優化算法 · Continuity ·
2023 年 11 月 28 日

In this study, we present a novel hybrid algorithm, combining Levy Flight (LF) and Particle Swarm Optimization (PSO) (LF-PSO), tailored for efficient multi-robot exploration in unknown environments with limited communication and no global positioning information. The research addresses the growing interest in employing multiple autonomous robots for exploration tasks, particularly in scenarios such as Urban Search and Rescue (USAR) operations. Multiple robots offer advantages like increased task coverage, robustness, flexibility, and scalability. However, existing approaches often make assumptions such as search area, robot positioning, communication restrictions, and target information that may not hold in real-world situations. The hybrid algorithm leverages LF, known for its effectiveness in large space exploration with sparse targets, and incorporates inter-robot repulsion as a social component through PSO. This combination enhances area exploration efficiency. We redefine the local best and global best positions to suit scenarios without continuous target information. Experimental simulations in a controlled environment demonstrate the algorithm's effectiveness, showcasing improved area coverage compared to traditional methods. In the process of refining our approach and testing it in complex, obstacle-rich environments, the presented work holds promise for enhancing multi-robot exploration in scenarios with limited information and communication capabilities.

In this study, we explore the potential of Multimodal Large Language Models (MLLMs) in improving embodied decision-making processes for agents. While Large Language Models (LLMs) have been widely used due to their advanced reasoning skills and vast world knowledge, MLLMs like GPT4-Vision offer enhanced visual understanding and reasoning capabilities. We investigate whether state-of-the-art MLLMs can handle embodied decision-making in an end-to-end manner and whether collaborations between LLMs and MLLMs can enhance decision-making. To address these questions, we introduce a new benchmark called PCA-EVAL, which evaluates embodied decision-making from the perspectives of Perception, Cognition, and Action. Additionally, we propose HOLMES, a multi-agent cooperation framework that allows LLMs to leverage MLLMs and APIs to gather multimodal information for informed decision-making. We compare end-to-end embodied decision-making and HOLMES on our benchmark and find that the GPT4-Vision model demonstrates strong end-to-end embodied decision-making abilities, outperforming GPT4-HOLMES in terms of average decision accuracy (+3%). However, this performance is exclusive to the latest GPT4-Vision model, surpassing the open-source state-of-the-art MLLM by 26%. Our results indicate that powerful MLLMs like GPT4-Vision hold promise for decision-making in embodied agents, offering new avenues for MLLM research. Code and data are open at //github.com/pkunlp-icler/PCA-EVAL/.

In this work, we study the features extracted by English self-supervised learning (SSL) models in cross-lingual contexts and propose a new metric to predict the quality of feature representations. Using automatic speech recognition (ASR) as a downstream task, we analyze the effect of model size, training objectives, and model architecture on the models' performance as a feature extractor for a set of topologically diverse corpora. We develop a novel metric, the Phonetic-Syntax Ratio (PSR), to measure the phonetic and synthetic information in the extracted representations using deep generalized canonical correlation analysis. Results show the contrastive loss in the wav2vec2.0 objective facilitates more effective cross-lingual feature extraction. There is a positive correlation between PSR scores and ASR performance, suggesting that phonetic information extracted by monolingual SSL models can be used for downstream tasks in cross-lingual settings. The proposed metric is an effective indicator of the quality of the representations and can be useful for model selection.

In recent years, Large Language Models (LLM) have emerged as pivotal tools in various applications. However, these models are susceptible to adversarial prompt attacks, where attackers can carefully curate input strings that lead to undesirable outputs. The inherent vulnerability of LLMs stems from their input-output mechanisms, especially when presented with intensely out-of-distribution (OOD) inputs. This paper proposes a token-level detection method to identify adversarial prompts, leveraging the LLM's capability to predict the next token's probability. We measure the degree of the model's perplexity and incorporate neighboring token information to encourage the detection of contiguous adversarial prompt sequences. As a result, we propose two methods: one that identifies each token as either being part of an adversarial prompt or not, and another that estimates the probability of each token being part of an adversarial prompt.

In this paper, we develop a high-precision satellite orbit determination model for satellites orbiting the Earth. Solving this model entails numerically integrating the differential equation of motion governing a two-body system, employing Fehlberg's formulation and the Runge-Kutta class of embedded integrators with adaptive stepsize control. Relevant primary perturbing forces included in this mathematical model are the full force gravitational field model, Earth's atmospheric drag, third body gravitational effects and solar radiation pressure. Development of the high-precision model required accounting for the perturbing influences of Earth radiation pressure, Earth tides and relativistic effects. The model is then implemented to obtain a high-fidelity Earth orbiting satellite propagator, namely the Satellite Ephemeris Determiner (SED), which is comparable to the popular High Precision Orbit Propagator (HPOP). The architecture of SED, the methodology employed, and the numerical results obtained are presented.

In this paper, we propose a progressive learning paradigm for transformer-based variable-rate image compression. Our approach covers a wide range of compression rates with the assistance of the Layer-adaptive Prompt Module (LPM). Inspired by visual prompt tuning, we use LPM to extract prompts for input images and hidden features at the encoder side and decoder side, respectively, which are fed as additional information into the Swin Transformer layer of a pre-trained transformer-based image compression model to affect the allocation of attention region and the bits, which in turn changes the target compression ratio of the model. To ensure the network is more lightweight, we involves the integration of prompt networks with less convolutional layers. Exhaustive experiments show that compared to methods based on multiple models, which are optimized separately for different target rates, the proposed method arrives at the same performance with 80% savings in parameter storage and 90% savings in datasets. Meanwhile, our model outperforms all current variable bitrate image methods in terms of rate-distortion performance and approaches the state-of-the-art fixed bitrate image compression methods trained from scratch.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.

We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司