The main aim of this study is to introduce a 2-layered Artificial Neural Network (ANN) for solving the Black-Scholes partial differential equation (PDE) of either fractional or ordinary orders. Firstly, a discretization method is employed to change the model into a sequence of Ordinary Differential Equations (ODE). Then each of these ODEs is solved with the aid of an ANN. Adam optimization is employed as the learning paradigm since it can add the foreknowledge of slowing down the process of optimization when getting close to the actual optimum solution. The model also takes advantage of fine tuning for speeding up the process and domain mapping to confront infinite domain issue. Finally, the accuracy, speed, and convergence of the method for solving several types of Black-Scholes model are reported.
Orbit-determination programs find the orbit solution that best fits a set of observations by minimizing the RMS of the residuals of the fit. For near-Earth asteroids, the uncertainty of the orbit solution may be compatible with trajectories that impact Earth. This paper shows how incorporating the impact condition as an observation in the orbit-determination process results in a robust technique for finding the regions in parameter space leading to impacts. The impact pseudo-observation residuals are the b-plane coordinates at the time of close approach and the uncertainty is set to a fraction of the Earth radius. The extended orbit-determination filter converges naturally to an impacting solution if allowed by the observations. The uncertainty of the resulting orbit provides an excellent geometric representation of the virtual impactor. As a result, the impact probability can be efficiently estimated by exploring this region in parameter space using importance sampling. The proposed technique can systematically handle a large number of estimated parameters, account for nongravitational forces, deal with nonlinearities, and correct for non-Gaussian initial uncertainty distributions. The algorithm has been implemented into a new impact monitoring system at JPL called Sentry-II, which is undergoing extensive testing. The main advantages of Sentry-II over JPL's currently operating impact monitoring system Sentry are that Sentry-II can systematically process orbits perturbed by nongravitational forces and that it is generally more robust when dealing with pathological cases. The runtimes and completeness of both systems are comparable, with the impact probability of Sentry-II for 99% completeness being $3\times10^{-7}$.
The nonlinear space-fractional problems often allow multiple stationary solutions, which can be much more complicated than the corresponding integer-order problems. In this paper, we systematically compute the solution landscapes of nonlinear constant/variable-order space-fractional problems. A fast approximation algorithm is developed to deal with the variable-order spectral fractional Laplacian by approximating the variable-indexing Fourier modes, and then combined with saddle dynamics to construct the solution landscape of variable-order space-fractional phase field model. Numerical experiments are performed to substantiate the accuracy and efficiency of fast approximation algorithm and elucidate essential features of the stationary solutions of space-fractional phase field model. Furthermore, we demonstrate that the solution landscapes of spectral fractional Laplacian problems can be reconfigured by varying the diffusion coefficients in the corresponding integer-order problems.
Semi-lagrangian schemes for discretization of the dynamic programming principle are based on a time discretization projected on a state-space grid. The use of a structured grid makes this approach not feasible for high-dimensional problems due to the curse of dimensionality. Here, we present a new approach for infinite horizon optimal control problems where the value function is computed using Radial Basis Functions (RBF) by the Shepard's moving least squares approximation method on scattered grids. We propose a new method to generate a scattered mesh driven by the dynamics and the selection of the shape parameter in the RBF using an optimization routine. This mesh will help to localize the problem and approximate the dynamic programming principle in high dimension. Error estimates for the value function are also provided. Numerical tests for high dimensional problems will show the effectiveness of the proposed method.
In this paper we study asymptotic properties of the maximum likelihood estimator (MLE) for the speed of a stochastic wave equation. We follow a well-known spectral approach to write the solution as a Fourier series, then we project the solution to a $N$-finite dimensional space and find the estimator as a function of the time and $N$. We then show consistency of the MLE using classical stochastic analysis. Afterward we prove the asymptotic normality using the Malliavin-Stein method. We also study asymptotic properties of a discretized version of the MLE for the parameter. We provide this asymptotic analysis of the proposed estimator as the number of Fourier modes, $N$, used in the estimation and the observation time go to infinity. Finally, we illustrate the theoretical results with some numerical experiments.
We consider the problem of efficiently scheduling jobs with precedence constraints on a set of identical machines in the presence of a uniform communication delay. In this setting, if two precedence-constrained jobs $u$ and $v$, with ($u \prec v$), are scheduled on different machines, then $v$ must start at least $\rho$ time units after $u$ completes. The scheduling objective is to minimize makespan, i.e. the total time between when the first job starts and the last job completes. The focus of this paper is to provide an efficient approximation algorithm with near-linear running time. We build on the algorithm of Lepere and Rapine [STACS 2002] for this problem to give an $O\left(\frac{\ln \rho}{\ln \ln \rho} \right)$-approximation algorithm that runs in $\tilde{O}(|V| + |E|)$ time.
An important issue for many economic experiments is how the experimenter can ensure sufficient power for rejecting one or more hypotheses. Here, we apply methods developed mainly within the area of clinical trials for testing multiple hypotheses simultaneously in adaptive, two-stage designs. Our main goal is to illustrate how this approach can be used to improve the power of economic experiments. Having briefly introduced the relevant theory, we perform a simulation study supported by the open source R package asd in order to evaluate the power of some different designs. The simulations show that the power to reject at least one hypothesis can be improved while still ensuring strong control of the overall Type I error probability, and without increasing the total sample size and thus the costs of the study. The derived designs are further illustrated by applying them to two different real-world data sets from experimental economics.
One of the central problems in machine learning is domain adaptation. Unlike past theoretical work, we consider a new model for subpopulation shift in the input or representation space. In this work, we propose a provably effective framework for domain adaptation based on label propagation. In our analysis, we use a simple but realistic ``expansion'' assumption, proposed in \citet{wei2021theoretical}. Using a teacher classifier trained on the source domain, our algorithm not only propagates to the target domain but also improves upon the teacher. By leveraging existing generalization bounds, we also obtain end-to-end finite-sample guarantees on the entire algorithm. In addition, we extend our theoretical framework to a more general setting of source-to-target transfer based on a third unlabeled dataset, which can be easily applied in various learning scenarios.
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.
Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.
Image foreground extraction is a classical problem in image processing and vision, with a large range of applications. In this dissertation, we focus on the extraction of text and graphics in mixed-content images, and design novel approaches for various aspects of this problem. We first propose a sparse decomposition framework, which models the background by a subspace containing smooth basis vectors, and foreground as a sparse and connected component. We then formulate an optimization framework to solve this problem, by adding suitable regularizations to the cost function to promote the desired characteristics of each component. We present two techniques to solve the proposed optimization problem, one based on alternating direction method of multipliers (ADMM), and the other one based on robust regression. Promising results are obtained for screen content image segmentation using the proposed algorithm. We then propose a robust subspace learning algorithm for the representation of the background component using training images that could contain both background and foreground components, as well as noise. With the learnt subspace for the background, we can further improve the segmentation results, compared to using a fixed subspace. Lastly, we investigate a different class of signal/image decomposition problem, where only one signal component is active at each signal element. In this case, besides estimating each component, we need to find their supports, which can be specified by a binary mask. We propose a mixed-integer programming problem, that jointly estimates the two components and their supports through an alternating optimization scheme. We show the application of this algorithm on various problems, including image segmentation, video motion segmentation, and also separation of text from textured images.