亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Video anomaly detection is an essential yet challenging task in the multimedia community, with promising applications in smart cities and secure communities. Existing methods attempt to learn abstract representations of regular events with statistical dependence to model the endogenous normality, which discriminates anomalies by measuring the deviations to the learned distribution. However, conventional representation learning is only a crude description of video normality and lacks an exploration of its underlying causality. The learned statistical dependence is unreliable for diverse regular events in the real world and may cause high false alarms due to overgeneralization. Inspired by causal representation learning, we think that there exists a causal variable capable of adequately representing the general patterns of regular events in which anomalies will present significant variations. Therefore, we design a causality-inspired representation consistency (CRC) framework to implicitly learn the unobservable causal variables of normality directly from available normal videos and detect abnormal events with the learned representation consistency. Extensive experiments show that the causality-inspired normality is robust to regular events with label-independent shifts, and the proposed CRC framework can quickly and accurately detect various complicated anomalies from real-world surveillance videos.

相關內容

Energy consumption is a fundamental concern in mobile application development, bearing substantial significance for both developers and end-users. Moreover, it is a critical determinant in the consumer's decision-making process when considering a smartphone purchase. From the sustainability perspective, it becomes imperative to explore approaches aimed at mitigating the energy consumption of mobile devices, given the significant global consequences arising from the extensive utilisation of billions of smartphones, which imparts a profound environmental impact. Despite the existence of various energy-efficient programming practices within the Android platform, the dominant mobile ecosystem, there remains a need for documented machine learning-based energy prediction algorithms tailored explicitly for mobile app development. Hence, the main objective of this research is to propose a novel neural network-based framework, enhanced by a metaheuristic approach, to achieve robust energy prediction in the context of mobile app development. The metaheuristic approach here plays a crucial role in not only identifying suitable learning algorithms and their corresponding parameters but also determining the optimal number of layers and neurons within each layer. To the best of our knowledge, prior studies have yet to employ any metaheuristic algorithm to address all these hyperparameters simultaneously. Moreover, due to limitations in accessing certain aspects of a mobile phone, there might be missing data in the data set, and the proposed framework can handle this. In addition, we conducted an optimal algorithm selection strategy, employing 13 metaheuristic algorithms, to identify the best algorithm based on accuracy and resistance to missing values. The comprehensive experiments demonstrate that our proposed approach yields significant outcomes for energy consumption prediction.

Mobile manipulators have been employed in many applications which are usually performed by multiple fixed-base robots or a large-size system, thanks to the mobility of the mobile base. However, the mobile base also brings redundancies to the system, which makes trajectory planning more challenging. One class of problems recently arising from mobile 3D printing is the trajectory-continuous tasks, in which the end-effector is required to follow a designed continuous trajectory (time-parametrized path) in task space. This paper formulates and solves the optimal trajectory planning problem for mobile manipulators under end-effector trajectory continuity constraint, which allows considerations of other constraints and trajectory optimization. To demonstrate our method, a discrete optimal trajectory planning algorithm is proposed to solve mobile 3D printing tasks in multiple experiments.

Compartmentalization is a form of defensive software design in which an application is broken down into isolated but communicating components. Retrofitting compartmentalization into existing applications is often thought to be expensive from the engineering effort and performance overhead points of view. Still, recent years have seen proposals of compartmentalization methods with promises of low engineering efforts and reduced performance impact. ARM Morello combines a modern ARM processor with an implementation of Capability Hardware Enhanced RISC Instructions (CHERI) aiming to provide efficient and secure compartmentalization. Past works exploring CHERI-based compartmentalization were restricted to emulated/FPGA prototypes. In this paper, we explore possible compartmentalization schemes with CHERI on the Morello chip. We propose two approaches representing different trade-offs in terms of engineering effort, security, scalability, and performance impact. We describe and implement these approaches on a prototype OS running bare metal on the Morello chip, compartmentalize two popular applications, and investigate the performance overheads. Furthermore, we show that compartmentalization can be achieved with an engineering cost that can be quite low if one is willing to trade off on scalability and security, and that performance overheads are similar to other intra-address space isolation mechanisms.

Despite their competitive performance on knowledge-intensive tasks, large language models (LLMs) still have limitations in memorizing all world knowledge especially long tail knowledge. In this paper, we study the KG-augmented language model approach for solving the knowledge graph question answering (KGQA) task that requires rich world knowledge. Existing work has shown that retrieving KG knowledge to enhance LLMs prompting can significantly improve LLMs performance in KGQA. However, their approaches lack a well-formed verbalization of KG knowledge, i.e., they ignore the gap between KG representations and textual representations. To this end, we propose an answer-sensitive KG-to-Text approach that can transform KG knowledge into well-textualized statements most informative for KGQA. Based on this approach, we propose a KG-to-Text enhanced LLMs framework for solving the KGQA task. Experiments on several KGQA benchmarks show that the proposed KG-to-Text augmented LLMs approach outperforms previous KG-augmented LLMs approaches regarding answer accuracy and usefulness of knowledge statements.

Blockwise self-attentional encoder models have recently emerged as one promising end-to-end approach to simultaneous speech translation. These models employ a blockwise beam search with hypothesis reliability scoring to determine when to wait for more input speech before translating further. However, this method maintains multiple hypotheses until the entire speech input is consumed -- this scheme cannot directly show a single \textit{incremental} translation to users. Further, this method lacks mechanisms for \textit{controlling} the quality vs. latency tradeoff. We propose a modified incremental blockwise beam search incorporating local agreement or hold-$n$ policies for quality-latency control. We apply our framework to models trained for online or offline translation and demonstrate that both types can be effectively used in online mode. Experimental results on MuST-C show 0.6-3.6 BLEU improvement without changing latency or 0.8-1.4 s latency improvement without changing quality.

Speech emotion recognition has evolved from research to practical applications. Previous studies of emotion recognition from speech have focused on developing models on certain datasets like IEMOCAP. The lack of data in the domain of emotion modeling emerges as a challenge to evaluate models in the other dataset, as well as to evaluate speech emotion recognition models that work in a multilingual setting. This paper proposes an ensemble learning to fuse results of pre-trained models for emotion share recognition from speech. The models were chosen to accommodate multilingual data from English and Spanish. The results show that ensemble learning can improve the performance of the baseline model with a single model and the previous best model from the late fusion. The performance is measured using the Spearman rank correlation coefficient since the task is a regression problem with ranking values. A Spearman rank correlation coefficient of 0.537 is reported for the test set, while for the development set, the score is 0.524. These scores are higher than the previous study of a fusion method from monolingual data, which achieved scores of 0.476 for the test and 0.470 for the development.

In-context learning (ICL) using large language models for tasks with many labels is challenging due to the limited context window, which makes it difficult to fit a sufficient number of examples in the prompt. In this paper, we use a pre-trained dense retrieval model to bypass this limitation, giving the model only a partial view of the full label space for each inference call. Testing with recent open-source LLMs (OPT, LLaMA), we set new state of the art performance in few-shot settings for three common intent classification datasets, with no finetuning. We also surpass fine-tuned performance on fine-grained sentiment classification in certain cases. We analyze the performance across number of in-context examples and different model scales, showing that larger models are necessary to effectively and consistently make use of larger context lengths for ICL. By running several ablations, we analyze the model's use of: a) the similarity of the in-context examples to the current input, b) the semantic content of the class names, and c) the correct correspondence between examples and labels. We demonstrate that all three are needed to varying degrees depending on the domain, contrary to certain recent works.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Triple extraction is an essential task in information extraction for natural language processing and knowledge graph construction. In this paper, we revisit the end-to-end triple extraction task for sequence generation. Since generative triple extraction may struggle to capture long-term dependencies and generate unfaithful triples, we introduce a novel model, contrastive triple extraction with a generative transformer. Specifically, we introduce a single shared transformer module for encoder-decoder-based generation. To generate faithful results, we propose a novel triplet contrastive training object. Moreover, we introduce two mechanisms to further improve model performance (i.e., batch-wise dynamic attention-masking and triple-wise calibration). Experimental results on three datasets (i.e., NYT, WebNLG, and MIE) show that our approach achieves better performance than that of baselines.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司