We propose a novel learning-based surrogate data assimilation (DA) model for efficient state estimation in a limited area. Our model employs a feedforward neural network for online computation, eliminating the need for integrating high-dimensional limited-area models. This approach offers significant computational advantages over traditional DA algorithms. Furthermore, our method avoids the requirement of lateral boundary conditions for the limited-area model in both online and offline computations. The design of our surrogate DA model is built upon a robust theoretical framework that leverages two fundamental concepts: observability and effective region. The concept of observability enables us to quantitatively determine the optimal amount of observation data necessary for accurate DA. Meanwhile, the concept of effective region substantially reduces the computational burden associated with computing observability and generating training data.
In recent years, graph neural networks (GNN) have achieved significant developments in a variety of graph analytical tasks. Nevertheless, GNN's superior performance will suffer from serious damage when the collected node features or structure relationships are partially missing owning to numerous unpredictable factors. Recently emerged graph completion learning (GCL) has received increasing attention, which aims to reconstruct the missing node features or structure relationships under the guidance of a specifically supervised task. Although these proposed GCL methods have made great success, they still exist the following problems: the reliance on labels, the bias of the reconstructed node features and structure relationships. Besides, the generalization ability of the existing GCL still faces a huge challenge when both collected node features and structure relationships are partially missing at the same time. To solve the above issues, we propose a more general GCL framework with the aid of self-supervised learning for improving the task performance of the existing GNN variants on graphs with features and structure missing, termed unsupervised GCL (UGCL). Specifically, to avoid the mismatch between missing node features and structure during the message-passing process of GNN, we separate the feature reconstruction and structure reconstruction and design its personalized model in turn. Then, a dual contrastive loss on the structure level and feature level is introduced to maximize the mutual information of node representations from feature reconstructing and structure reconstructing paths for providing more supervision signals. Finally, the reconstructed node features and structure can be applied to the downstream node classification task. Extensive experiments on eight datasets, three GNN variants and five missing rates demonstrate the effectiveness of our proposed method.
Recent work on knowledge graph completion (KGC) focused on learning embeddings of entities and relations in knowledge graphs. These embedding methods require that all test entities are observed at training time, resulting in a time-consuming retraining process for out-of-knowledge-graph (OOKG) entities. To address this issue, current inductive knowledge embedding methods employ graph neural networks (GNNs) to represent unseen entities by aggregating information of known neighbors. They face three important challenges: (i) data sparsity, (ii) the presence of complex patterns in knowledge graphs (e.g., inter-rule correlations), and (iii) the presence of interactions among rule mining, rule inference, and embedding. In this paper, we propose a virtual neighbor network with inter-rule correlations (VNC) that consists of three stages: (i) rule mining, (ii) rule inference, and (iii) embedding. In the rule mining process, to identify complex patterns in knowledge graphs, both logic rules and inter-rule correlations are extracted from knowledge graphs based on operations over relation embeddings. To reduce data sparsity, virtual neighbors for OOKG entities are predicted and assigned soft labels by optimizing a rule-constrained problem. We also devise an iterative framework to capture the underlying relations between rule learning and embedding learning. In our experiments, results on both link prediction and triple classification tasks show that the proposed VNC framework achieves state-of-the-art performance on four widely-used knowledge graphs. Further analysis reveals that VNC is robust to the proportion of unseen entities and effectively mitigates data sparsity.
We study a higher-order surface finite-element (SFEM) penalty-based discretization of the tangential surface Stokes problem. Several discrete formulations are investigated which are equivalent in the continuous setting. The impact of the choice of discretization of the diffusion term and of the divergence term on numerical accuracy and convergence, as well as on implementation advantages, is discussed. We analyze the inf-sup stability of the discrete scheme in a generic approach by lifting stable finite-element pairs known from the literature. A discretization error analysis in tangential norms then shows optimal order convergence of an isogeometric setting that requires only geometric knowledge of the discrete surface.
Rule learning approaches for knowledge graph completion are efficient, interpretable and competitive to purely neural models. The rule aggregation problem is concerned with finding one plausibility score for a candidate fact which was simultaneously predicted by multiple rules. Although the problem is ubiquitous, as data-driven rule learning can result in noisy and large rulesets, it is underrepresented in the literature and its theoretical foundations have not been studied before in this context. In this work, we demonstrate that existing aggregation approaches can be expressed as marginal inference operations over the predicting rules. In particular, we show that the common Max-aggregation strategy, which scores candidates based on the rule with the highest confidence, has a probabilistic interpretation. Finally, we propose an efficient and overlooked baseline which combines the previous strategies and is competitive to computationally more expensive approaches.
Speech emotion recognition is an important component of any human centered system. But speech characteristics produced and perceived by a person can be influenced by a multitude of reasons, both desirable such as emotion, and undesirable such as noise. To train robust emotion recognition models, we need a large, yet realistic data distribution, but emotion datasets are often small and hence are augmented with noise. Often noise augmentation makes one important assumption, that the prediction label should remain the same in presence or absence of noise, which is true for automatic speech recognition but not necessarily true for perception based tasks. In this paper we make three novel contributions. We validate through crowdsourcing that the presence of noise does change the annotation label and hence may alter the original ground truth label. We then show how disregarding this knowledge and assuming consistency in ground truth labels propagates to downstream evaluation of ML models, both for performance evaluation and robustness testing. We end the paper with a set of recommendations for noise augmentations in speech emotion recognition datasets.
In the past decade, the deployment of deep learning (Artificial Intelligence (AI)) methods has become pervasive across a spectrum of real-world applications, often in safety-critical contexts. This comprehensive research article rigorously investigates the ethical dimensions intricately linked to the rapid evolution of AI technologies, with a particular focus on the healthcare domain. Delving deeply, it explores a multitude of facets including transparency, adept data management, human oversight, educational imperatives, and international collaboration within the realm of AI advancement. Central to this article is the proposition of a conscientious AI framework, meticulously crafted to accentuate values of transparency, equity, answerability, and a human-centric orientation. The second contribution of the article is the in-depth and thorough discussion of the limitations inherent to AI systems. It astutely identifies potential biases and the intricate challenges of navigating multifaceted contexts. Lastly, the article unequivocally accentuates the pressing need for globally standardized AI ethics principles and frameworks. Simultaneously, it aptly illustrates the adaptability of the ethical framework proposed herein, positioned skillfully to surmount emergent challenges.
Ever since the emergence of large language models (LLMs) and related applications, such as ChatGPT, its performance and error analysis for programming tasks have been subject to research. In this work-in-progress paper, we explore the potential of such LLMs for computing educators and learners, as we analyze the feedback it generates to a given input containing program code. In particular, we aim at (1) exploring how an LLM like ChatGPT responds to students seeking help with their introductory programming tasks, and (2) identifying feedback types in its responses. To achieve these goals, we used students' programming sequences from a dataset gathered within a CS1 course as input for ChatGPT along with questions required to elicit feedback and correct solutions. The results show that ChatGPT performs reasonably well for some of the introductory programming tasks and student errors, which means that students can potentially benefit. However, educators should provide guidance on how to use the provided feedback, as it can contain misleading information for novices.
As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.