亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Memory replay based techniques have shown great success for continual learning with incrementally accumulated Euclidean data. Directly applying them to continually expanding graphs, however, leads to the potential memory explosion problem due to the need to buffer representative nodes and their associated topological neighborhood structures. To this end, we systematically analyze the key challenges in the memory explosion problem, and present a general framework, i.e., Parameter Decoupled Graph Neural Networks (PDGNNs) with Topology-aware Embedding Memory (TEM), to tackle this issue. The proposed framework not only reduces the memory space complexity from $\mathcal{O}(nd^L)$ to $\mathcal{O}(n)$~\footnote{$n$: memory budget, $d$: average node degree, $L$: the radius of the GNN receptive field}, but also fully utilizes the topological information for memory replay. Specifically, PDGNNs decouple trainable parameters from the computation ego-subgraph via \textit{Topology-aware Embeddings} (TEs), which compress ego-subgraphs into compact vectors (i.e., TEs) to reduce the memory consumption. Based on this framework, we discover a unique \textit{pseudo-training effect} in continual learning on expanding graphs and this effect motivates us to develop a novel \textit{coverage maximization sampling} strategy that can enhance the performance with a tight memory budget. Thorough empirical studies demonstrate that, by tackling the memory explosion problem and incorporating topological information into memory replay, PDGNNs with TEM significantly outperform state-of-the-art techniques, especially in the challenging class-incremental setting.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Recent advancements in drone technology have shown that commercial off-the-shelf Micro Aerial Drones are more effective than large-sized drones for performing flight missions in narrow environments, such as swarming, indoor navigation, and inspection of hazardous locations. Due to their deployments in many civilian and military applications, safe and reliable communication of these drones throughout the mission is critical. The Crazyflie ecosystem is one of the most popular Micro Aerial Drones and has the potential to be deployed worldwide. In this paper, we empirically investigate two interference attacks against the Crazy Real Time Protocol (CRTP) implemented within the Crazyflie drones. In particular, we explore the feasibility of experimenting two attack vectors that can disrupt an ongoing flight mission: the jamming attack, and the hijacking attack. Our experimental results demonstrate the effectiveness of such attacks in both autonomous and non-autonomous flight modes on a Crazyflie 2.1 drone. Finally, we suggest potential shielding strategies that guarantee a safe and secure flight mission. To the best of our knowledge, this is the first work investigating jamming and hijacking attacks against Micro Aerial Drones, both in autonomous and non-autonomous modes.

Mean Field Games (MFGs) have the ability to handle large-scale multi-agent systems, but learning Nash equilibria in MFGs remains a challenging task. In this paper, we propose a deep reinforcement learning (DRL) algorithm that achieves population-dependent Nash equilibrium without the need for averaging or sampling from history, inspired by Munchausen RL and Online Mirror Descent. Through the design of an additional inner-loop replay buffer, the agents can effectively learn to achieve Nash equilibrium from any distribution, mitigating catastrophic forgetting. The resulting policy can be applied to various initial distributions. Numerical experiments on four canonical examples demonstrate our algorithm has better convergence properties than SOTA algorithms, in particular a DRL version of Fictitious Play for population-dependent policies.

Accurate real-time traffic state forecasting plays a pivotal role in traffic control research. In particular, the CIRCLES consortium project necessitates predictive techniques to mitigate the impact of data source delays. After the success of the MegaVanderTest experiment, this paper aims at overcoming the current system limitations and develop a more suited approach to improve the real-time traffic state estimation for the next iterations of the experiment. In this paper, we introduce the SA-LSTM, a deep forecasting method integrating Self-Attention (SA) on the spatial dimension with Long Short-Term Memory (LSTM) yielding state-of-the-art results in real-time mesoscale traffic forecasting. We extend this approach to multi-step forecasting with the n-step SA-LSTM, which outperforms traditional multi-step forecasting methods in the trade-off between short-term and long-term predictions, all while operating in real-time.

In this paper, we propose Prosody-aware VITS (PAVITS) for emotional voice conversion (EVC), aiming to achieve two major objectives of EVC: high content naturalness and high emotional naturalness, which are crucial for meeting the demands of human perception. To improve the content naturalness of converted audio, we have developed an end-to-end EVC architecture inspired by the high audio quality of VITS. By seamlessly integrating an acoustic converter and vocoder, we effectively address the common issue of mismatch between emotional prosody training and run-time conversion that is prevalent in existing EVC models. To further enhance the emotional naturalness, we introduce an emotion descriptor to model the subtle prosody variations of different speech emotions. Additionally, we propose a prosody predictor, which predicts prosody features from text based on the provided emotion label. Notably, we introduce a prosody alignment loss to establish a connection between latent prosody features from two distinct modalities, ensuring effective training. Experimental results show that the performance of PAVITS is superior to the state-of-the-art EVC methods. Speech Samples are available at //jeremychee4.github.io/pavits4EVC/ .

Deep learning techniques have demonstrated great potential for accurately estimating brain age by analyzing Magnetic Resonance Imaging (MRI) data from healthy individuals. However, current methods for brain age estimation often directly utilize whole input images, overlooking two important considerations: 1) the heterogeneous nature of brain aging, where different brain regions may degenerate at different rates, and 2) the existence of age-independent redundancies in brain structure. To overcome these limitations, we propose a Dual Graph Attention based Disentanglement Multi-instance Learning (DGA-DMIL) framework for improving brain age estimation. Specifically, the 3D MRI data, treated as a bag of instances, is fed into a 2D convolutional neural network backbone, to capture the unique aging patterns in MRI. A dual graph attention aggregator is then proposed to learn the backbone features by exploiting the intra- and inter-instance relationships. Furthermore, a disentanglement branch is introduced to separate age-related features from age-independent structural representations to ameliorate the interference of redundant information on age prediction. To verify the effectiveness of the proposed framework, we evaluate it on two datasets, UK Biobank and ADNI, containing a total of 35,388 healthy individuals. Our proposed model demonstrates exceptional accuracy in estimating brain age, achieving a remarkable mean absolute error of 2.12 years in the UK Biobank. The results establish our approach as state-of-the-art compared to other competing brain age estimation models. In addition, the instance contribution scores identify the varied importance of brain areas for aging prediction, which provides deeper insights into the understanding of brain aging.

Cameras and LiDARs are both important sensors for autonomous driving, playing critical roles in 3D object detection. Camera-LiDAR Fusion has been a prevalent solution for robust and accurate driving perception. In contrast to the vast majority of existing arts that focus on how to improve the performance of 3D target detection through cross-modal schemes, deep learning algorithms, and training tricks, we devote attention to the impact of sensor configurations on the performance of learning-based methods. To achieve this, we propose a unified information-theoretic surrogate metric for camera and LiDAR evaluation based on the proposed sensor perception model. We also design an accelerated high-quality framework for data acquisition, model training, and performance evaluation that functions with the CARLA simulator. To show the correlation between detection performance and our surrogate metrics, We conduct experiments using several camera-LiDAR placements and parameters inspired by self-driving companies and research institutions. Extensive experimental results of representative algorithms on nuScenes dataset validate the effectiveness of our surrogate metric, demonstrating that sensor configurations significantly impact point-cloud-image fusion based detection models, which contribute up to 30% discrepancy in terms of the average precision.

Recent advancements have underscored the impact of deep learning techniques on multivariate time series forecasting (MTSF). Generally, these techniques are bifurcated into two categories: Channel-independence and Channel-mixing approaches. Although Channel-independence methods typically yield better results, Channel-mixing could theoretically offer improvements by leveraging inter-variable correlations. Nonetheless, we argue that the integration of uncorrelated information in channel-mixing methods could curtail the potential enhancement in MTSF model performance. To substantiate this claim, we introduce the Cross-variable Decorrelation Aware feature Modeling (CDAM) for Channel-mixing approaches, aiming to refine Channel-mixing by minimizing redundant information between channels while enhancing relevant mutual information. Furthermore, we introduce the Temporal correlation Aware Modeling (TAM) to exploit temporal correlations, a step beyond conventional single-step forecasting methods. This strategy maximizes the mutual information between adjacent sub-sequences of both the forecasted and target series. Combining CDAM and TAM, our novel framework significantly surpasses existing models, including those previously considered state-of-the-art, in comprehensive tests.

Prompt learning in pretrained visual-language models has shown remarkable flexibility across various downstream tasks. Leveraging its inherent lightweight nature, recent research attempted to integrate the powerful pretrained models into federated learning frameworks to simultaneously reduce communication costs and promote local training on insufficient data. Despite these efforts, current federated prompt learning methods lack specialized designs to systematically address severe data heterogeneities, e.g., data distribution with both label and feature shifts involved. To address this challenge, we present Federated Prompts Cooperation via Optimal Transport (FedOTP), which introduces efficient collaborative prompt learning strategies to capture diverse category traits on a per-client basis. Specifically, for each client, we learn a global prompt to extract consensus knowledge among clients, and a local prompt to capture client-specific category characteristics. Unbalanced Optimal Transport is then employed to align local visual features with these prompts, striking a balance between global consensus and local personalization. Extensive experiments on datasets with various types of heterogeneities have demonstrated that our FedOTP outperforms the state-of-the-art methods.

Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司