亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of sequential prediction in the stochastic setting with an adversary that is allowed to inject clean-label adversarial (or out-of-distribution) examples. Algorithms designed to handle purely stochastic data tend to fail in the presence of such adversarial examples, often leading to erroneous predictions. This is undesirable in many high-stakes applications such as medical recommendations, where abstaining from predictions on adversarial examples is preferable to misclassification. On the other hand, assuming fully adversarial data leads to very pessimistic bounds that are often vacuous in practice. To capture this motivation, we propose a new model of sequential prediction that sits between the purely stochastic and fully adversarial settings by allowing the learner to abstain from making a prediction at no cost on adversarial examples. Assuming access to the marginal distribution on the non-adversarial examples, we design a learner whose error scales with the VC dimension (mirroring the stochastic setting) of the hypothesis class, as opposed to the Littlestone dimension which characterizes the fully adversarial setting. Furthermore, we design a learner for VC dimension~1 classes, which works even in the absence of access to the marginal distribution. Our key technical contribution is a novel measure for quantifying uncertainty for learning VC classes, which may be of independent interest.

相關內容

Deep reinforcement learning algorithms are usually impeded by sampling inefficiency, heavily depending on multiple interactions with the environment to acquire accurate decision-making capabilities. In contrast, humans rely on their hippocampus to retrieve relevant information from past experiences of relevant tasks, which guides their decision-making when learning a new task, rather than exclusively depending on environmental interactions. Nevertheless, designing a hippocampus-like module for an agent to incorporate past experiences into established reinforcement learning algorithms presents two challenges. The first challenge involves selecting the most relevant past experiences for the current task, and the second challenge is integrating such experiences into the decision network. To address these challenges, we propose a novel method that utilizes a retrieval network based on task-conditioned hypernetwork, which adapts the retrieval network's parameters depending on the task. At the same time, a dynamic modification mechanism enhances the collaborative efforts between the retrieval and decision networks. We evaluate the proposed method across various tasks within a multitask scenario in the Minigrid environment. The experimental results demonstrate that our proposed method significantly outperforms strong baselines.

Social recommendation systems face the problem of social influence bias, which can lead to an overemphasis on recommending items that friends have interacted with. Addressing this problem is crucial, and existing methods often rely on techniques such as weight adjustment or leveraging unbiased data to eliminate this bias. However, we argue that not all biases are detrimental, i.e., some items recommended by friends may align with the user's interests. Blindly eliminating such biases could undermine these positive effects, potentially diminishing recommendation accuracy. In this paper, we propose a Causal Disentanglement-based framework for Regulating Social influence Bias in social recommendation, named CDRSB, to improve recommendation performance. From the perspective of causal inference, we find that the user social network could be regarded as a confounder between the user and item embeddings (treatment) and ratings (outcome). Due to the presence of this social network confounder, two paths exist from user and item embeddings to ratings: a non-causal social influence path and a causal interest path. Building upon this insight, we propose a disentangled encoder that focuses on disentangling user and item embeddings into interest and social influence embeddings. Mutual information-based objectives are designed to enhance the distinctiveness of these disentangled embeddings, eliminating redundant information. Additionally, a regulatory decoder that employs a weight calculation module to dynamically learn the weights of social influence embeddings for effectively regulating social influence bias has been designed. Experimental results on four large-scale real-world datasets Ciao, Epinions, Dianping, and Douban book demonstrate the effectiveness of CDRSB compared to state-of-the-art baselines.

This study explores the benefits of integrating the novel clustered federated learning (CFL) approach with non-orthogonal multiple access (NOMA) under non-independent and identically distributed (non-IID) datasets, where multiple devices participate in the aggregation with time limitations and a finite number of sub-channels. A detailed theoretical analysis of the generalization gap that measures the degree of non-IID in the data distribution is presented. Following that, solutions to address the challenges posed by non-IID conditions are proposed with the analysis of the properties. Specifically, users' data distributions are parameterized as concentration parameters and grouped using spectral clustering, with Dirichlet distribution serving as the prior. The investigation into the generalization gap and convergence rate guides the design of sub-channel assignments through the matching-based algorithm, and the power allocation is achieved by Karush-Kuhn-Tucker (KKT) conditions with the derived closed-form solution. The extensive simulation results show that the proposed cluster-based FL framework can outperform FL baselines in terms of both test accuracy and convergence rate. Moreover, jointly optimizing sub-channel and power allocation in NOMA-enhanced networks can lead to a significant improvement.

In the logic programming paradigm, a program is defined by a set of methods, each of which can be executed when specific conditions are met during the current state of an execution. The semantics of these programs can be elegantly represented using sequent calculi, in which each method is linked to an inference rule. In this context, proof search mirrors the program's execution. Previous works introduced a framework in which the process of constructing proof nets is employed to model executions, as opposed to the traditional approach of proof search in sequent calculus. This paper further extends this investigation by focussing on the pure multiplicative fragment of this framework. We demonstrate, providing practical examples, the capability to define logic programming methods with context-sensitive behaviors solely through specific resource-preserving and context-free operations, corresponding to certain generalized multiplicative connectives explored in existing literature. We show how some of these methods, although still multiplicative, escape the purely multiplicative fragment of Linear Logic (MLL).

Sequential design of experiments for optimizing a reward function in causal systems can be effectively modeled by the sequential design of interventions in causal bandits (CBs). In the existing literature on CBs, a critical assumption is that the causal models remain constant over time. However, this assumption does not necessarily hold in complex systems, which constantly undergo temporal model fluctuations. This paper addresses the robustness of CBs to such model fluctuations. The focus is on causal systems with linear structural equation models (SEMs). The SEMs and the time-varying pre- and post-interventional statistical models are all unknown. Cumulative regret is adopted as the design criteria, based on which the objective is to design a sequence of interventions that incur the smallest cumulative regret with respect to an oracle aware of the entire causal model and its fluctuations. First, it is established that the existing approaches fail to maintain regret sub-linearity with even a few instances of model deviation. Specifically, when the number of instances with model deviation is as few as $T^\frac{1}{2L}$, where $T$ is the time horizon and $L$ is the longest causal path in the graph, the existing algorithms will have linear regret in $T$. Next, a robust CB algorithm is designed, and its regret is analyzed, where upper and information-theoretic lower bounds on the regret are established. Specifically, in a graph with $N$ nodes and maximum degree $d$, under a general measure of model deviation $C$, the cumulative regret is upper bounded by $\tilde{\mathcal{O}}(d^{L-\frac{1}{2}}(\sqrt{NT} + NC))$ and lower bounded by $\Omega(d^{\frac{L}{2}-2}\max\{\sqrt{T},d^2C\})$. Comparing these bounds establishes that the proposed algorithm achieves nearly optimal $\tilde{\mathcal{O}}(\sqrt{T})$ regret when $C$ is $o(\sqrt{T})$ and maintains sub-linear regret for a broader range of $C$.

We study the problem of estimating the mean of an identity covariance Gaussian in the truncated setting, in the regime when the truncation set comes from a low-complexity family $\mathcal{C}$ of sets. Specifically, for a fixed but unknown truncation set $S \subseteq \mathbb{R}^d$, we are given access to samples from the distribution $\mathcal{N}(\boldsymbol{ \mu}, \mathbf{ I})$ truncated to the set $S$. The goal is to estimate $\boldsymbol\mu$ within accuracy $\epsilon>0$ in $\ell_2$-norm. Our main result is a Statistical Query (SQ) lower bound suggesting a super-polynomial information-computation gap for this task. In more detail, we show that the complexity of any SQ algorithm for this problem is $d^{\mathrm{poly}(1/\epsilon)}$, even when the class $\mathcal{C}$ is simple so that $\mathrm{poly}(d/\epsilon)$ samples information-theoretically suffice. Concretely, our SQ lower bound applies when $\mathcal{C}$ is a union of a bounded number of rectangles whose VC dimension and Gaussian surface are small. As a corollary of our construction, it also follows that the complexity of the previously known algorithm for this task is qualitatively best possible.

Natural gradient methods have been used to optimise the parameters of probability distributions in a variety of settings, often resulting in fast-converging procedures. Unfortunately, for many distributions of interest, computing the natural gradient has a number of challenges. In this work we propose a novel technique for tackling such issues, which involves reframing the optimisation as one with respect to the parameters of a surrogate distribution, for which computing the natural gradient is easy. We give several examples of existing methods that can be interpreted as applying this technique, and propose a new method for applying it to a wide variety of problems. Our method expands the set of distributions that can be efficiently targeted with natural gradients. Furthermore, it is fast, easy to understand, simple to implement using standard autodiff software, and does not require lengthy model-specific derivations. We demonstrate our method on maximum likelihood estimation and variational inference tasks.

We prove lower bounds on the error of any estimator for the mean of a real probability distribution under the knowledge that the distribution belongs to a given set. We apply these lower bounds both to parametric and nonparametric estimation. In the nonparametric case, we apply our results to the question of sub-Gaussian estimation for distributions with finite variance to obtain new lower bounds in the small error probability regime, and present an optimal estimator in that regime. In the (semi-)parametric case, we use the Fisher information to provide distribution-dependent lower bounds that are constant-tight asymptotically, of order $\sqrt{2\log(1/\delta)/(nI)}$ where $I$ is the Fisher information of the distribution. We use known minimizers of the Fisher information on some nonparametric set of distributions to give lower bounds in cases such as corrupted distributions, or bounded/semi-bounded distributions.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

We study how to generate captions that are not only accurate in describing an image but also discriminative across different images. The problem is both fundamental and interesting, as most machine-generated captions, despite phenomenal research progresses in the past several years, are expressed in a very monotonic and featureless format. While such captions are normally accurate, they often lack important characteristics in human languages - distinctiveness for each caption and diversity for different images. To address this problem, we propose a novel conditional generative adversarial network for generating diverse captions across images. Instead of estimating the quality of a caption solely on one image, the proposed comparative adversarial learning framework better assesses the quality of captions by comparing a set of captions within the image-caption joint space. By contrasting with human-written captions and image-mismatched captions, the caption generator effectively exploits the inherent characteristics of human languages, and generates more discriminative captions. We show that our proposed network is capable of producing accurate and diverse captions across images.

北京阿比特科技有限公司