亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces ProLab, a novel approach using property-level label space for creating strong interpretable segmentation models. Instead of relying solely on category-specific annotations, ProLab uses descriptive properties grounded in common sense knowledge for supervising segmentation models. It is based on two core designs. First, we employ Large Language Models (LLMs) and carefully crafted prompts to generate descriptions of all involved categories that carry meaningful common sense knowledge and follow a structured format. Second, we introduce a description embedding model preserving semantic correlation across descriptions and then cluster them into a set of descriptive properties (e.g., 256) using K-Means. These properties are based on interpretable common sense knowledge consistent with theories of human recognition. We empirically show that our approach makes segmentation models perform stronger on five classic benchmarks (e.g., ADE20K, COCO-Stuff, Pascal Context, Cityscapes, and BDD). Our method also shows better scalability with extended training steps than category-level supervision. Our interpretable segmentation framework also emerges with the generalization ability to segment out-of-domain or unknown categories using only in-domain descriptive properties. Code is available at //github.com/lambert-x/ProLab.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Analysis · 矩陣論 · 可理解性 · Machine Learning ·
2024 年 9 月 28 日

This paper presents a novel framework for tensor eigenvalue analysis in the context of multi-modal data fusion, leveraging topological invariants such as Betti numbers. Traditional approaches to tensor eigenvalue analysis often extend matrix theory, whereas this work introduces a topological perspective to enhance the understanding of tensor structures. By establishing new theorems that link eigenvalues to topological features, the proposed framework provides deeper insights into the latent structure of data, improving both interpretability and robustness. Applications in data fusion demonstrate the theoretical and practical significance of this approach, with potential for broad impact in machine learning and data science.

We introduce the Joint Video-Image Diffusion model (JVID), a novel approach to generating high-quality and temporally coherent videos. We achieve this by integrating two diffusion models: a Latent Image Diffusion Model (LIDM) trained on images and a Latent Video Diffusion Model (LVDM) trained on video data. Our method combines these models in the reverse diffusion process, where the LIDM enhances image quality and the LVDM ensures temporal consistency. This unique combination allows us to effectively handle the complex spatio-temporal dynamics in video generation. Our results demonstrate quantitative and qualitative improvements in producing realistic and coherent videos.

This paper introduces a novel framework designed to achieve a high compression ratio in Split Learning (SL) scenarios where resource-constrained devices are involved in large-scale model training. Our investigations demonstrate that compressing feature maps within SL leads to biased gradients that can negatively impact the convergence rates and diminish the generalization capabilities of the resulting models. Our theoretical analysis provides insights into how compression errors critically hinder SL performance, which previous methodologies underestimate. To address these challenges, we employ a narrow bit-width encoded mask to compensate for the sparsification error without increasing the order of time complexity. Supported by rigorous theoretical analysis, our framework significantly reduces compression errors and accelerates the convergence. Extensive experiments also verify that our method outperforms existing solutions regarding training efficiency and communication complexity.

As networks continue to expand and become more interconnected, the need for novel malware detection methods becomes more pronounced. Traditional security measures are increasingly inadequate against the sophistication of modern cyber attacks. Deep Packet Inspection (DPI) has been pivotal in enhancing network security, offering an in-depth analysis of network traffic that surpasses conventional monitoring techniques. DPI not only examines the metadata of network packets, but also dives into the actual content being carried within the packet payloads, providing a comprehensive view of the data flowing through networks. The integration of advanced deep learning techniques with DPI has introduced modern methodologies into malware detection. However, the challenge with the state-of-the-art supervised learning approaches is that they prevent the generalization to unseen attacks embedded in the payloads, prohibiting them from accurately detecting new attacks and transferring knowledge learned from previous attacks to the new attacks with small labeled sample sizes. This paper leverages the recent advancements in self-supervised learning and few-shot learning. Our proposed self-supervised approach trains a transformer to learn the embedding of the payloads from a vast amount of unlabeled datasets by masking portions of payloads, leading to a learnt representation that well generalizes to various downstream tasks. Once the representation is extracted from payloads, they are used to train a malware detection algorithm. The representation obtained from the transformer is then used to adapt the malware detector to novel types of attacks using few-shot learning approaches. Our experimental results across several datasets show the great success and generalization of the proposed approach to novel scenarios.

In this paper, we introduce MIO, a novel foundation model built on multimodal tokens, capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner. While the emergence of large language models (LLMs) and multimodal large language models (MM-LLMs) propels advancements in artificial general intelligence through their versatile capabilities, they still lack true any-to-any understanding and generation. Recently, the release of GPT-4o has showcased the remarkable potential of any-to-any LLMs for complex real-world tasks, enabling omnidirectional input and output across images, speech, and text. However, it is closed-source and does not support the generation of multimodal interleaved sequences. To address this gap, we present MIO, which is trained on a mixture of discrete tokens across four modalities using causal multimodal modeling. MIO undergoes a four-stage training process: (1) alignment pre-training, (2) interleaved pre-training, (3) speech-enhanced pre-training, and (4) comprehensive supervised fine-tuning on diverse textual, visual, and speech tasks. Our experimental results indicate that MIO exhibits competitive, and in some cases superior, performance compared to previous dual-modal baselines, any-to-any model baselines, and even modality-specific baselines. Moreover, MIO demonstrates advanced capabilities inherent to its any-to-any feature, such as interleaved video-text generation, chain-of-visual-thought reasoning, visual guideline generation, instructional image editing, etc.

This paper presents a benchmark dataset for aligning lecture videos with corresponding slides and introduces a novel multimodal algorithm leveraging features from speech, text, and images. It achieves an average accuracy of 0.82 in comparison to SIFT (0.56) while being approximately 11 times faster. Using dynamic programming the algorithm tries to determine the optimal slide sequence. The results show that penalizing slide transitions increases accuracy. Features obtained via optical character recognition (OCR) contribute the most to a high matching accuracy, followed by image features. The findings highlight that audio transcripts alone provide valuable information for alignment and are beneficial if OCR data is lacking. Variations in matching accuracy across different lectures highlight the challenges associated with video quality and lecture style. The novel multimodal algorithm demonstrates robustness to some of these challenges, underscoring the potential of the approach.

This paper proposes Pix2Next, a novel image-to-image translation framework designed to address the challenge of generating high-quality Near-Infrared (NIR) images from RGB inputs. Our approach leverages a state-of-the-art Vision Foundation Model (VFM) within an encoder-decoder architecture, incorporating cross-attention mechanisms to enhance feature integration. This design captures detailed global representations and preserves essential spectral characteristics, treating RGB-to-NIR translation as more than a simple domain transfer problem. A multi-scale PatchGAN discriminator ensures realistic image generation at various detail levels, while carefully designed loss functions couple global context understanding with local feature preservation. We performed experiments on the RANUS dataset to demonstrate Pix2Next's advantages in quantitative metrics and visual quality, improving the FID score by 34.81% compared to existing methods. Furthermore, we demonstrate the practical utility of Pix2Next by showing improved performance on a downstream object detection task using generated NIR data to augment limited real NIR datasets. The proposed approach enables the scaling up of NIR datasets without additional data acquisition or annotation efforts, potentially accelerating advancements in NIR-based computer vision applications.

This paper studies sample average approximation (SAA) in solving convex or strongly convex stochastic programming (SP) problems. Under some common regularity conditions, we show -- perhaps for the first time -- that SAA's sample complexity can be completely free from any quantification of metric entropy (such as the logarithm of the covering number), leading to a significantly more efficient rate with dimensionality $d$ than most existing results. From the newly established complexity bounds, an important revelation is that SAA and the canonical stochastic mirror descent (SMD) method, two mainstream solution approaches to SP, entail almost identical rates of sample efficiency, rectifying a persistent theoretical discrepancy of SAA from SMD by the order of $O(d)$. Furthermore, this paper explores non-Lipschitzian scenarios where SAA maintains provable efficacy but the corresponding results for SMD remain mostly unexplored, indicating the potential of SAA's better applicability in some irregular settings.

We present BehAV, a novel approach for autonomous robot navigation in outdoor scenes guided by human instructions and leveraging Vision Language Models (VLMs). Our method interprets human commands using a Large Language Model (LLM) and categorizes the instructions into navigation and behavioral guidelines. Navigation guidelines consist of directional commands (e.g., "move forward until") and associated landmarks (e.g., "the building with blue windows"), while behavioral guidelines encompass regulatory actions (e.g., "stay on") and their corresponding objects (e.g., "pavements"). We use VLMs for their zero-shot scene understanding capabilities to estimate landmark locations from RGB images for robot navigation. Further, we introduce a novel scene representation that utilizes VLMs to ground behavioral rules into a behavioral cost map. This cost map encodes the presence of behavioral objects within the scene and assigns costs based on their regulatory actions. The behavioral cost map is integrated with a LiDAR-based occupancy map for navigation. To navigate outdoor scenes while adhering to the instructed behaviors, we present an unconstrained Model Predictive Control (MPC)-based planner that prioritizes both reaching landmarks and following behavioral guidelines. We evaluate the performance of BehAV on a quadruped robot across diverse real-world scenarios, demonstrating a 22.49% improvement in alignment with human-teleoperated actions, as measured by Frechet distance, and achieving a 40% higher navigation success rate compared to state-of-the-art methods.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

北京阿比特科技有限公司