亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a conceptual insight into the Design of the Metaverse to facilitate educational transformation in selected developing nations within the Global South regions, e.g., India. These regions are often afflicted with socio-economic challenges but rich in cultural diversity. By utilizing a socio-technical design approach, this study explores the specific needs and opportunities presented by these diverse settings. A rapid scoping review of the scant existing literature is conducted to provide fundamental insights. A novel design methodology was formulated that utilized ChatGPT for ideation, brainstorming, and literature survey query generation. This paper aims not only to shed light on the educational possibilities enabled by the Metaverse but also to highlight design considerations unique to the Global South.

相關內容

This paper addresses the challenge of processing long documents using generative transformer models. To evaluate different approaches, we introduce BABILong, a new benchmark designed to assess model capabilities in extracting and processing distributed facts within extensive texts. Our evaluation, which includes benchmarks for GPT-4 and RAG, reveals that common methods are effective only for sequences up to $10^4$ elements. In contrast, fine-tuning GPT-2 with recurrent memory augmentations enables it to handle tasks involving up to $10^7$ elements. This achievement marks a substantial leap, as it is by far the longest input processed by any open neural network model to date, demonstrating a significant improvement in the processing capabilities for long sequences.

This paper identifies a cultural dominance issue within large language models (LLMs) due to the predominant use of English data in model training (e.g., ChatGPT). LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages. To systematically evaluate the cultural dominance issue, we build a benchmark of concrete (e.g., holidays and songs) and abstract (e.g., values and opinions) cultural objects. Empirical results show that the representative GPT models suffer from the culture dominance problem, where GPT-4 is the most affected while text-davinci-003 suffers the least from this problem. Our study emphasizes the need to critically examine cultural dominance and ethical consideration in their development and deployment. We show that two straightforward methods in model development (i.e., pretraining on more diverse data) and deployment (e.g., culture-aware prompting) can significantly mitigate the cultural dominance issue in LLMs.

This paper introduces causal scoring as a novel approach to frame causal estimation in the context of decision making. Causal scoring entails the estimation of scores that support decision making by providing insights into causal effects. We present three valuable causal interpretations of these scores: effect estimation (EE), effect ordering (EO), and effect classification (EC). In the EE interpretation, the causal score represents the effect itself. The EO interpretation implies that the score can serve as a proxy for the magnitude of the effect, enabling the sorting of individuals based on their causal effects. The EC interpretation enables the classification of individuals into high- and low-effect categories using a predefined threshold. We demonstrate the value of these alternative causal interpretations (EO and EC) through two key results. First, we show that aligning the statistical modeling with the desired causal interpretation improves the accuracy of causal estimation. Second, we establish that more flexible causal interpretations are plausible in a wider range of settings and propose conditions to assess their validity. We showcase the practical utility of causal scoring through diverse scenarios, including situations involving unobserved confounding due to self-selection, lack of data on the primary outcome of interest, or lack of data on how individuals behave when intervened. These examples illustrate how causal scoring facilitates reasoning about flexible causal interpretations of statistical estimates in various contexts. They encompass confounded estimates, effect estimates on surrogate outcomes, and even predictions about non-causal quantities as potential causal scores.

This study explores the impact of peer acknowledgement on learner engagement and implicit psychological attributes in written annotations on an online social reading platform. Participants included 91 undergraduates from a large North American University. Using log file data, we analyzed the relationship between learners' received peer acknowledgement and their subsequent annotation behaviours using cross-lag regression. Higher peer acknowledgements correlate with increased initiation of annotations and responses to peer annotations. By applying text mining techniques and calculating Shapley values to analyze 1,969 social annotation entries, we identified prominent psychological themes within three dimensions (i.e., affect, cognition, and motivation) that foster peer acknowledgment in digital social annotation. These themes include positive affect, openness to learning and discussion, and expression of motivation. The findings assist educators in improving online learning communities and provide guidance to technology developers in designing effective prompts, drawing from both implicit psychological cues and explicit learning behaviours.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.

Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.

Model complexity is a fundamental problem in deep learning. In this paper we conduct a systematic overview of the latest studies on model complexity in deep learning. Model complexity of deep learning can be categorized into expressive capacity and effective model complexity. We review the existing studies on those two categories along four important factors, including model framework, model size, optimization process and data complexity. We also discuss the applications of deep learning model complexity including understanding model generalization capability, model optimization, and model selection and design. We conclude by proposing several interesting future directions.

We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.

北京阿比特科技有限公司