亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Optics is an exciting route for the next generation of computing hardware for machine learning, promising several orders of magnitude enhancement in both computational speed and energy efficiency. However, to reach the full capacity of an optical neural network it is necessary that the computing not only for the inference, but also for the training be implemented optically. The primary algorithm for training a neural network is backpropagation, in which the calculation is performed in the order opposite to the information flow for inference. While straightforward in a digital computer, optical implementation of backpropagation has so far remained elusive, particularly because of the conflicting requirements for the optical element that implements the nonlinear activation function. In this work, we address this challenge for the first time with a surprisingly simple and generic scheme. Saturable absorbers are employed for the role of the activation units, and the required properties are achieved through a pump-probe process, in which the forward propagating signal acts as the pump and backward as the probe. Our approach is adaptable to various analog platforms, materials, and network structures, and it demonstrates the possibility of constructing neural networks entirely reliant on analog optical processes for both training and inference tasks.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

In this article, we propose an interval constraint programming method for globally solving catalog-based categorical optimization problems. It supports catalogs of arbitrary size and properties of arbitrary dimension, and does not require any modeling effort from the user. A novel catalog-based contractor (or filtering operator) guarantees consistency between the categorical properties and the existing catalog items. This results in an intuitive and generic approach that is exact, rigorous (robust to roundoff errors) and can be easily implemented in an off-the-shelf interval-based continuous solver that interleaves branching and constraint propagation. We demonstrate the validity of the approach on a numerical problem in which a categorical variable is described by a two-dimensional property space. A Julia prototype is available as open-source software under the MIT license at //github.com/cvanaret/CateGOrical.jl

Data-driven algorithm design is a promising, learning-based approach for beyond worst-case analysis of algorithms with tunable parameters. An important open problem is the design of computationally efficient data-driven algorithms for combinatorial algorithm families with multiple parameters. As one fixes the problem instance and varies the parameters, the "dual" loss function typically has a piecewise-decomposable structure, i.e. is well-behaved except at certain sharp transition boundaries. In this work we initiate the study of techniques to develop efficient ERM learning algorithms for data-driven algorithm design by enumerating the pieces of the sum dual loss functions for a collection of problem instances. The running time of our approach scales with the actual number of pieces that appear as opposed to worst case upper bounds on the number of pieces. Our approach involves two novel ingredients -- an output-sensitive algorithm for enumerating polytopes induced by a set of hyperplanes using tools from computational geometry, and an execution graph which compactly represents all the states the algorithm could attain for all possible parameter values. We illustrate our techniques by giving algorithms for pricing problems, linkage-based clustering and dynamic-programming based sequence alignment.

We introduce a flexible method to simultaneously infer both the drift and volatility functions of a discretely observed scalar diffusion. We introduce spline bases to represent these functions and develop a Markov chain Monte Carlo algorithm to infer, a posteriori, the coefficients of these functions in the spline basis. A key innovation is that we use spline bases to model transformed versions of the drift and volatility functions rather than the functions themselves. The output of the algorithm is a posterior sample of plausible drift and volatility functions that are not constrained to any particular parametric family. The flexibility of this approach provides practitioners a powerful investigative tool, allowing them to posit a variety of parametric models to better capture the underlying dynamics of their processes of interest. We illustrate the versatility of our method by applying it to challenging datasets from finance, paleoclimatology, and astrophysics. In view of the parametric diffusion models widely employed in the literature for those examples, some of our results are surprising since they call into question some aspects of these models.

FP8 formats are gaining popularity to boost the computational efficiency for training and inference of large deep learning models. Their main challenge is that a careful choice of scaling is needed to prevent degradation due to the reduced dynamic range compared to higher-precision formats. Although there exists ample literature about selecting such scalings for INT formats, this critical aspect has yet to be addressed for FP8. This paper presents a methodology to select the scalings for FP8 linear layers, based on dynamically updating per-tensor scales for the weights, gradients and activations. We apply this methodology to train and validate large language models of the type of GPT and Llama 2 using FP8, for model sizes ranging from 111M to 70B. To facilitate the understanding of the FP8 dynamics, our results are accompanied by plots of the per-tensor scale distribution for weights, activations and gradients during both training and inference.

Gaussian processes (GPs) are popular nonparametric statistical models for learning unknown functions and quantifying the spatiotemporal uncertainty in data. Recent works have extended GPs to model scalar and vector quantities distributed over non-Euclidean domains, including smooth manifolds appearing in numerous fields such as computer vision, dynamical systems, and neuroscience. However, these approaches assume that the manifold underlying the data is known, limiting their practical utility. We introduce RVGP, a generalisation of GPs for learning vector signals over latent Riemannian manifolds. Our method uses positional encoding with eigenfunctions of the connection Laplacian, associated with the tangent bundle, readily derived from common graph-based approximation of data. We demonstrate that RVGP possesses global regularity over the manifold, which allows it to super-resolve and inpaint vector fields while preserving singularities. Furthermore, we use RVGP to reconstruct high-density neural dynamics derived from low-density EEG recordings in healthy individuals and Alzheimer's patients. We show that vector field singularities are important disease markers and that their reconstruction leads to a comparable classification accuracy of disease states to high-density recordings. Thus, our method overcomes a significant practical limitation in experimental and clinical applications.

Machine learning using quantum convolutional neural networks (QCNNs) has demonstrated success in both quantum and classical data classification. In previous studies, QCNNs attained a higher classification accuracy than their classical counterparts under the same training conditions in the few-parameter regime. However, the general performance of large-scale quantum models is difficult to examine because of the limited size of quantum circuits, which can be reliably implemented in the near future. We propose transfer learning as an effective strategy for utilizing small QCNNs in the noisy intermediate-scale quantum era to the full extent. In the classical-to-quantum transfer learning framework, a QCNN can solve complex classification problems without requiring a large-scale quantum circuit by utilizing a pre-trained classical convolutional neural network (CNN). We perform numerical simulations of QCNN models with various sets of quantum convolution and pooling operations for MNIST data classification under transfer learning, in which a classical CNN is trained with Fashion-MNIST data. The results show that transfer learning from classical to quantum CNN performs considerably better than purely classical transfer learning models under similar training conditions.

We present ReCAT, a recursive composition augmented Transformer that is able to explicitly model hierarchical syntactic structures of raw texts without relying on gold trees during both learning and inference. Existing research along this line restricts data to follow a hierarchical tree structure and thus lacks inter-span communications. To overcome the problem, we propose a novel contextual inside-outside (CIO) layer that learns contextualized representations of spans through bottom-up and top-down passes, where a bottom-up pass forms representations of high-level spans by composing low-level spans, while a top-down pass combines information inside and outside a span. By stacking several CIO layers between the embedding layer and the attention layers in Transformer, the ReCAT model can perform both deep intra-span and deep inter-span interactions, and thus generate multi-grained representations fully contextualized with other spans. Moreover, the CIO layers can be jointly pre-trained with Transformers, making ReCAT enjoy scaling ability, strong performance, and interpretability at the same time. We conduct experiments on various sentence-level and span-level tasks. Evaluation results indicate that ReCAT can significantly outperform vanilla Transformer models on all span-level tasks and baselines that combine recursive networks with Transformers on natural language inference tasks. More interestingly, the hierarchical structures induced by ReCAT exhibit strong consistency with human-annotated syntactic trees, indicating good interpretability brought by the CIO layers.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司