Efficient and robust data clustering remains a challenging task in the field of data analysis. Recent efforts have explored the integration of granular-ball (GB) computing with clustering algorithms to address this challenge, yielding promising results. However, existing methods for generating GBs often rely on single indicators to measure GB quality and employ threshold-based or greedy strategies, potentially leading to GBs that do not accurately capture the underlying data distribution. To address these limitations, this article introduces a novel GB generation method. The originality of this method lies in leveraging the principle of justifiable granularity to measure the quality of a GB for clustering tasks. To be precise, we define the coverage and specificity of a GB and introduce a comprehensive measure for assessing GB quality. Utilizing this quality measure, the method incorporates a binary tree pruning-based strategy and an anomaly detection method to determine the best combination of sub-GBs for each GB and identify abnormal GBs, respectively. Compared to previous GB generation methods, the new method maximizes the overall quality of generated GBs while ensuring alignment with the data distribution, thereby enhancing the rationality of the generated GBs. Experimental results obtained from both synthetic and publicly available datasets underscore the effectiveness of the proposed GB generation method, showcasing improvements in clustering accuracy and normalized mutual information.
We prove impossibility results for adaptivity in non-smooth stochastic convex optimization. Given a set of problem parameters we wish to adapt to, we define a "price of adaptivity" (PoA) that, roughly speaking, measures the multiplicative increase in suboptimality due to uncertainty in these parameters. When the initial distance to the optimum is unknown but a gradient norm bound is known, we show that the PoA is at least logarithmic for expected suboptimality, and double-logarithmic for median suboptimality. When there is uncertainty in both distance and gradient norm, we show that the PoA must be polynomial in the level of uncertainty. Our lower bounds nearly match existing upper bounds, and establish that there is no parameter-free lunch. En route, we also establish tight upper and lower bounds for (known-parameter) high-probability stochastic convex optimization with heavy-tailed and bounded noise, respectively.
We propose an efficient offline pointing calibration method for operational antenna systems which does not require any downtime. Our approach minimizes the calibration effort and exploits technical signal information which is typically used for monitoring and control purposes in ground station operations. Using a standard antenna interface and data from an operational satellite contact, we come up with a robust strategy for training data set generation. On top of this, we learn the parameters of a suitable coordinate transform by means of linear regression. In our experiments, we show the usefulness of the method in a real-world setup.
Application energy efficiency can be improved by executing each application component on the compute element that consumes the least energy while also satisfying time constraints. In principle, the function as a service (FaaS) paradigm should simplify such optimizations by abstracting away compute location, but existing FaaS systems do not provide for user transparency over application energy consumption or task placement. Here we present GreenFaaS, a novel open source framework that bridges this gap between energy-efficient applications and FaaS platforms. GreenFaaS can be deployed by end users or providers across systems to monitor energy use, provide task-specific feedback, and schedule tasks in an energy-aware manner. We demonstrate that intelligent placement of tasks can both reduce energy consumption and improve performance. For a synthetic workload, GreenFaaS reduces the energy-delay product by 45% compared to alternatives. Furthermore, running a molecular design application through GreenFaaS can reduce energy consumption by 21% and runtime by 63% by better matching tasks with machines.
Regression analysis is one of the most popularly used statistical technique which only measures the direct effect of independent variables on dependent variable. Path analysis looks for both direct and indirect effects of independent variables and may overcome several hurdles allied with regression models. It utilizes one or more structural regression equations in the model which are used to estimate the unknown parameters. The aim of this work is to study the path analysis models when the endogenous (dependent) variable and exogenous (independent) variables are linked through the elliptical copulas. Using well-organized numerical schemes, we investigate the performance of path models when direct and indirect effects are estimated applying classical ordinary least squares and copula-based regression approaches in different scenarios. Finally, two real data applications are also presented to demonstrate the performance of path analysis using copula approach.
In the field of 2D image generation modeling and representation learning, Masked Generative Encoder (MAGE) has demonstrated the synergistic potential between generative modeling and representation learning. Inspired by this, we propose Point-MAGE to extend this concept to point cloud data. Specifically, this framework first utilizes a Vector Quantized Variational Autoencoder (VQVAE) to reconstruct a neural field representation of 3D shapes, thereby learning discrete semantic features of point patches. Subsequently, by combining the masking model with variable masking ratios, we achieve synchronous training for both generation and representation learning. Furthermore, our framework seamlessly integrates with existing point cloud self-supervised learning (SSL) models, thereby enhancing their performance. We extensively evaluate the representation learning and generation capabilities of Point-MAGE. In shape classification tasks, Point-MAGE achieved an accuracy of 94.2% on the ModelNet40 dataset and 92.9% (+1.3%) on the ScanObjectNN dataset. Additionally, it achieved new state-of-the-art performance in few-shot learning and part segmentation tasks. Experimental results also confirmed that Point-MAGE can generate detailed and high-quality 3D shapes in both unconditional and conditional settings.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.