亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The multiplicity Schwartz-Zippel lemma asserts that over a field, a low-degree polynomial cannot vanish with high multiplicity very often on a sufficiently large product set. Since its discovery in a work of Dvir, Kopparty, Saraf and Sudan [SIAM J. Comput., 2013], the lemma has found numerous applications in both math and computer science; in particular, in the definition and properties of multiplicity codes by Kopparty, Saraf and Yekhanin [J. ACM, 2014]. In this work, we show how to algorithmize the multiplicity Schwartz-Zippel lemma for arbitrary product sets over any field. In other words, we give an efficient algorithm for unique decoding of multivariate multiplicity codes from half their minimum distance on arbitrary product sets over all fields. Previously, such an algorithm was known either when the underlying product set had a nice algebraic structure: for instance, was a subfield (by Kopparty [ToC, 2015]) or when the underlying field had large (or zero) characteristic, the multiplicity parameter was sufficiently large and the multiplicity code had distance bounded away from $1$ (Bhandari, Harsha, Kumar and Sudan [STOC 2021]). In particular, even unique decoding of bivariate multiplicity codes with multiplicity two from half their minimum distance was not known over arbitrary product sets over any field. Our algorithm builds upon a result of Kim and Kopparty [ToC, 2017] who gave an algorithmic version of the Schwartz-Zippel lemma (without multiplicities) or equivalently, an efficient algorithm for unique decoding of Reed-Muller codes over arbitrary product sets. We introduce a refined notion of distance based on the multiplicity Schwartz-Zippel lemma and design a unique decoding algorithm for this distance measure. On the way, we give an alternate analysis of Forney's classical generalized minimum distance decoder that might be of independent interest.

相關內容

This paper presents a data-driven optimal control policy for a micro flapping wing unmanned aerial vehicle. First, a set of optimal trajectories are computed off-line based on a geometric formulation of dynamics that captures the nonlinear coupling between the large angle flapping motion and the quasi-steady aerodynamics. Then, it is transformed into a feedback control system according to the framework of imitation learning. In particular, an additional constraint is incorporated through the learning process to enhance the stability properties of the resulting controlled dynamics. Compared with conventional methods, the proposed constrained imitation learning eliminates the need to generate additional optimal trajectories on-line, without sacrificing stability. As such, the computational efficiency is substantially improved. Furthermore, this establishes the first nonlinear control system that stabilizes the coupled longitudinal and lateral dynamics of flapping wing aerial vehicle without relying on averaging or linearization. These are illustrated by numerical examples for a simulated model inspired by Monarch butterflies.

Kernel methods are learning algorithms that enjoy solid theoretical foundations while suffering from important computational limitations. Sketching, that consists in looking for solutions among a subspace of reduced dimension, is a widely studied approach to alleviate this numerical burden. However, fast sketching strategies, such as non-adaptive subsampling, significantly degrade the guarantees of the algorithms, while theoretically-accurate sketches, such as the Gaussian one, turn out to remain relatively slow in practice. In this paper, we introduce the $p$-sparsified sketches, that combine the benefits from both approaches to achieve a good tradeoff between statistical accuracy and computational efficiency. To support our method, we derive excess risk bounds for both single and multiple output problems, with generic Lipschitz losses, providing new guarantees for a wide range of applications, from robust regression to multiple quantile regression. We also provide empirical evidences of the superiority of our sketches over recent SOTA approaches.

We propose a new iterative method using machine learning algorithms to fit an imprecise regression model to data that consist of intervals rather than point values. The method is based on a single-layer interval neural network which can be trained to produce an interval prediction. It seeks parameters for the optimal model that minimize the mean squared error between the actual and predicted interval values of the dependent variable using a first-order gradient-based optimization and interval analysis computations to model the measurement imprecision of the data. The method captures the relationship between the explanatory variables and a dependent variable by fitting an imprecise regression model, which is linear with respect to unknown interval parameters even the regression model is nonlinear. We consider the explanatory variables to be precise point values, but the measured dependent values are characterized by interval bounds without any probabilistic information. Thus, the imprecision is modeled non-probabilistically even while the scatter of dependent values is modeled probabilistically by homoscedastic Gaussian distributions. The proposed iterative method estimates the lower and upper bounds of the expectation region, which is an envelope of all possible precise regression lines obtained by ordinary regression analysis based on any configuration of real-valued points from the respective intervals and their x-values.

Measuring the stability of conclusions derived from Ordinary Least Squares linear regression is critically important, but most metrics either only measure local stability (i.e. against infinitesimal changes in the data), or are only interpretable under statistical assumptions. Recent work proposes a simple, global, finite-sample stability metric: the minimum number of samples that need to be removed so that rerunning the analysis overturns the conclusion, specifically meaning that the sign of a particular coefficient of the estimated regressor changes. However, besides the trivial exponential-time algorithm, the only approach for computing this metric is a greedy heuristic that lacks provable guarantees under reasonable, verifiable assumptions; the heuristic provides a loose upper bound on the stability and also cannot certify lower bounds on it. We show that in the low-dimensional regime where the number of covariates is a constant but the number of samples is large, there are efficient algorithms for provably estimating (a fractional version of) this metric. Applying our algorithms to the Boston Housing dataset, we exhibit regression analyses where we can estimate the stability up to a factor of $3$ better than the greedy heuristic, and analyses where we can certify stability to dropping even a majority of the samples.

Topological Data Analysis is a growing area of data science, which aims at computing and characterizing the geometry and topology of data sets, in order to produce useful descriptors for subsequent statistical and machine learning tasks. Its main computational tool is persistent homology, which amounts to track the topological changes in growing families of subsets of the data set itself, called filtrations, and encode them in an algebraic object, called persistence module. Even though algorithms and theoretical properties of modules are now well-known in the single-parameter case, that is, when there is only one filtration to study, much less is known in the multi-parameter case, where several filtrations are given at once. Though more complicated, the resulting persistence modules are usually richer and encode more information, making them better descriptors for data science. In this article, we present the first approximation scheme, which is based on fibered barcodes and exact matchings, two constructions that stem from the theory of single-parameter persistence, for computing and decomposing general multi-parameter persistence modules. Our algorithm has controlled complexity and running time, and works in arbitrary dimension, i.e., with an arbitrary number of filtrations. Moreover, when restricting to specific classes of multi-parameter persistence modules, namely the ones that can be decomposed into intervals, we establish theoretical results about the approximation error between our estimate and the true module in terms of interleaving distance. Finally, we present empirical evidence validating output quality and speed-up on several data sets.

Sampling from an unnormalized target distribution is an essential problem with many applications in probabilistic inference. Stein Variational Gradient Descent (SVGD) has been shown to be a powerful method that iteratively updates a set of particles to approximate the distribution of interest. Furthermore, when analysing its asymptotic properties, SVGD reduces exactly to a single-objective optimization problem and can be viewed as a probabilistic version of this single-objective optimization problem. A natural question then arises: "Can we derive a probabilistic version of the multi-objective optimization?". To answer this question, we propose Stochastic Multiple Target Sampling Gradient Descent (MT-SGD), enabling us to sample from multiple unnormalized target distributions. Specifically, our MT-SGD conducts a flow of intermediate distributions gradually orienting to multiple target distributions, which allows the sampled particles to move to the joint high-likelihood region of the target distributions. Interestingly, the asymptotic analysis shows that our approach reduces exactly to the multiple-gradient descent algorithm for multi-objective optimization, as expected. Finally, we conduct comprehensive experiments to demonstrate the merit of our approach to multi-task learning.

This paper proposes a frequency-time hybrid solver for the time-dependent wave equation in two-dimensional interior spatial domains. The approach relies on four main elements, namely, 1) A multiple scattering strategy that decomposes a given time-domain problem into a sequence of limited-duration time-domain problems of scattering by overlapping open-arcs, each one of which is reduced (by means of the Fourier transform) to a sequence of Helmholtz frequency-domain problems; 2) Boundary integral equations on overlapping boundary patches for the solution of the frequency-domain problems in point 1); 3) A smooth "Time-windowing and recentering" methodology that enables both treatment of incident signals of long duration and long time simulation; and, 4) A Fourier transform algorithm that delivers numerically dispersionless, spectrally-accurate time evolution for given incident fields. By recasting the interior time-domain problem in terms of a sequence of open-arc multiple scattering events, the proposed approach regularizes the full interior frequency domain problem-which, if obtained by either Fourier or Laplace transformation of the corresponding interior time-domain problem, must encapsulate infinitely many scattering events, giving rise to non-uniqueness and eigenfunctions in the Fourier case, and ill conditioning in the Laplace case. Numerical examples are included which demonstrate the accuracy and efficiency of the proposed methodology.

We consider a system consisting of $n$ particles, moving forward in jumps on the real line. System state is the empirical distribution of particle locations. Each particle ``jumps forward'' at some time points, with the instantaneous rate of jumps given by a decreasing function of the particle's location quantile within the current state (empirical distribution). Previous work on this model established, under certain conditions, the convergence, as $n\to\infty$, of the system random dynamics to that of a deterministic mean-field model (MFM), which is a solution to an integro-differential equation. Another line of previous work established the existence of MFMs that are traveling waves, as well as the attraction of MFM trajectories to traveling waves. The main results of this paper are: (a) We prove that, as $n\to\infty$, the stationary distributions of (re-centered) states concentrate on a (re-centered) traveling wave; (b) We obtain a uniform across $n$ moment bound on the stationary distributions of (re-centered) states; (c) We prove a convergence-to-MFM result, which is substantially more general than that in previous work. Results (b) and (c) serve as ``ingredients'' of the proof of (a), but also are of independent interest.

We present two novel federated learning (FL) schemes that mitigate the effect of straggling devices by introducing redundancy on the devices' data across the network. Compared to other schemes in the literature, which deal with stragglers or device dropouts by ignoring their contribution, the proposed schemes do not suffer from the client drift problem. The first scheme, CodedPaddedFL, mitigates the effect of stragglers while retaining the privacy level of conventional FL. It combines one-time padding for user data privacy with gradient codes to yield straggler resiliency. The second scheme, CodedSecAgg, provides straggler resiliency and robustness against model inversion attacks and is based on Shamir's secret sharing. We apply CodedPaddedFL and CodedSecAgg to a classification problem. For a scenario with 120 devices, CodedPaddedFL achieves a speed-up factor of 18 for an accuracy of 95% on the MNIST dataset compared to conventional FL. Furthermore, it yields similar performance in terms of latency compared to a recently proposed scheme by Prakash et al. without the shortcoming of additional leakage of private data. CodedSecAgg outperforms the state-of-the-art secure aggregation scheme LightSecAgg by a speed-up factor of 6.6-18.7 for the MNIST dataset for an accuracy of 95%.

The automated localisation of damage in structures is a challenging but critical ingredient in the path towards predictive or condition-based maintenance of high value structures. The use of acoustic emission time of arrival mapping is a promising approach to this challenge, but is severely hindered by the need to collect a dense set of artificial acoustic emission measurements across the structure, resulting in a lengthy and often impractical data acquisition process. In this paper, we consider the use of physics-informed Gaussian processes for learning these maps to alleviate this problem. In the approach, the Gaussian process is constrained to the physical domain such that information relating to the geometry and boundary conditions of the structure are embedded directly into the learning process, returning a model that guarantees that any predictions made satisfy physically-consistent behaviour at the boundary. A number of scenarios that arise when training measurement acquisition is limited, including where training data are sparse, and also of limited coverage over the structure of interest. Using a complex plate-like structure as an experimental case study, we show that our approach significantly reduces the burden of data collection, where it is seen that incorporation of boundary condition knowledge significantly improves predictive accuracy as training observations are reduced, particularly when training measurements are not available across all parts of the structure.

北京阿比特科技有限公司