亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a general approach, based on exponential inequalities, to derive bounds on the generalization error of randomized learning algorithms. Using this approach, we provide bounds on the average generalization error as well as bounds on its tail probability, for both the PAC-Bayesian and single-draw scenarios. Specifically, for the case of sub-Gaussian loss functions, we obtain novel bounds that depend on the information density between the training data and the output hypothesis. When suitably weakened, these bounds recover many of the information-theoretic bounds available in the literature. We also extend the proposed exponential-inequality approach to the setting recently introduced by Steinke and Zakynthinou (2020), where the learning algorithm depends on a randomly selected subset of the available training data. For this setup, we present bounds for bounded loss functions in terms of the conditional information density between the output hypothesis and the random variable determining the subset choice, given all training data. Through our approach, we recover the average generalization bound presented by Steinke and Zakynthinou (2020) and extend it to the PAC-Bayesian and single-draw scenarios. For the single-draw scenario, we also obtain novel bounds in terms of the conditional $\alpha$-mutual information and the conditional maximal leakage.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 泛化理論 · 泛化誤差上界 · 情景 · 估計/估計量 ·
2023 年 5 月 1 日

We provide a new information-theoretic generalization error bound that is exactly tight (i.e., matching even the constant) for the canonical quadratic Gaussian mean estimation problem. Despite considerable existing efforts in deriving information-theoretic generalization error bounds, applying them to this simple setting where sample average is used as the estimate of the mean value of Gaussian data has not yielded satisfying results. In fact, most existing bounds are order-wise loose in this setting, which has raised concerns about the fundamental capability of information-theoretic bounds in reasoning the generalization behavior for machine learning. The proposed new bound adopts the individual-sample-based approach proposed by Bu et al., but also has several key new ingredients. Firstly, instead of applying the change of measure inequality on the loss function, we apply it to the generalization error function itself; secondly, the bound is derived in a conditional manner; lastly, a reference distribution, which bears a certain similarity to the prior distribution in the Bayesian setting, is introduced. The combination of these components produces a general KL-divergence-based generalization error bound. We further show that although the conditional bounding and the reference distribution can make the bound exactly tight, removing them does not significantly degrade the bound, which leads to a mutual-information-based bound that is also asymptotically tight in this setting.

We present ISAAC (Input-baSed ApproximAte Curvature), a novel method that conditions the gradient using selected second-order information and has an asymptotically vanishing computational overhead, assuming a batch size smaller than the number of neurons. We show that it is possible to compute a good conditioner based on only the input to a respective layer without a substantial computational overhead. The proposed method allows effective training even in small-batch stochastic regimes, which makes it competitive to first-order as well as second-order methods.

In this paper, we find a sample complexity bound for learning a simplex from noisy samples. Assume a dataset of size $n$ is given which includes i.i.d. samples drawn from a uniform distribution over an unknown simplex in $\mathbb{R}^K$, where samples are assumed to be corrupted by a multi-variate additive Gaussian noise of an arbitrary magnitude. We prove the existence of an algorithm that with high probability outputs a simplex having a $\ell_2$ distance of at most $\varepsilon$ from the true simplex (for any $\varepsilon>0$). Also, we theoretically show that in order to achieve this bound, it is sufficient to have $n\ge\left(K^2/\varepsilon^2\right)e^{\Omega\left(K/\mathrm{SNR}^2\right)}$ samples, where $\mathrm{SNR}$ stands for the signal-to-noise ratio. This result solves an important open problem and shows as long as $\mathrm{SNR}\ge\Omega\left(K^{1/2}\right)$, the sample complexity of the noisy regime has the same order to that of the noiseless case. Our proofs are a combination of the so-called sample compression technique in \citep{ashtiani2018nearly}, mathematical tools from high-dimensional geometry, and Fourier analysis. In particular, we have proposed a general Fourier-based technique for recovery of a more general class of distribution families from additive Gaussian noise, which can be further used in a variety of other related problems.

The maximization of submodular functions have found widespread application in areas such as machine learning, combinatorial optimization, and economics, where practitioners often wish to enforce various constraints; the matroid constraint has been investigated extensively due to its algorithmic properties and expressive power. Recent progress has focused on fast algorithms for important classes of matroids given in explicit form. Currently, nearly-linear time algorithms only exist for graphic and partition matroids [ICALP '19]. In this work, we develop algorithms for monotone submodular maximization constrained by graphic, transversal matroids, or laminar matroids in time near-linear in the size of their representation. Our algorithms achieve an optimal approximation of $1-1/e-\epsilon$ and both generalize and accelerate the results of Ene and Nguyen [ICALP '19]. In fact, the running time of our algorithm cannot be improved within the fast continuous greedy framework of Badanidiyuru and Vondr\'ak [SODA '14]. To achieve near-linear running time, we make use of dynamic data structures that maintain bases with approximate maximum cardinality and weight under certain element updates. These data structures need to support a weight decrease operation and a novel FREEZE operation that allows the algorithm to freeze elements (i.e. force to be contained) in its basis regardless of future data structure operations. For the laminar matroid, we present a new dynamic data structure using the top tree interface of Alstrup, Holm, de Lichtenberg, and Thorup [TALG '05] that maintains the maximum weight basis under insertions and deletions of elements in $O(\log n)$ time. For the transversal matroid the FREEZE operation corresponds to requiring the data structure to keep a certain set $S$ of vertices matched, a property that we call $S$-stability.

Assessing causal effects in the presence of unmeasured confounding is a challenging problem. Although auxiliary variables, such as instrumental variables, are commonly used to identify causal effects, they are often unavailable in practice due to stringent and untestable conditions. To address this issue, previous researches have utilized linear structural equation models to show that the causal effect can be identifiable when noise variables of the treatment and outcome are both non-Gaussian. In this paper, we investigate the problem of identifying the causal effect using auxiliary covariates and non-Gaussianity from the treatment. Our key idea is to characterize the impact of unmeasured confounders using an observed covariate, assuming they are all Gaussian. The auxiliary covariate can be an invalid instrument or an invalid proxy variable. We demonstrate that the causal effect can be identified using this measured covariate, even when the only source of non-Gaussianity comes from the treatment. We then extend the identification results to the multi-treatment setting and provide sufficient conditions for identification. Based on our identification results, we propose a simple and efficient procedure for calculating causal effects and show the $\sqrt{n}$-consistency of the proposed estimator. Finally, we evaluate the performance of our estimator through simulation studies and an application.

We study numerical integration over bounded regions in $\mathbb{R}^s, s\ge1$ with respect to some probability measure. We replace random sampling with quasi-Monte Carlo methods, where the underlying point set is derived from deterministic constructions that aim to fill the space more evenly than random points. Such quasi-Monte Carlo point sets are ordinarily designed for the uniform measure, and the theory only works for product measures when a coordinate-wise transformation is applied. Going beyond this setting, we first consider the case where the target density is a mixture distribution where each term in the mixture comes from a product distribution. Next we consider target densities which can be approximated with such mixture distributions. We require the approximation to be a sum of coordinate-wise products and the approximation to be positive everywhere (so that they can be re-scaled to probability density functions). We use tensor product hat function approximations for this purpose here, since a hat function approximation of a positive function is itself positive. We also study more complex algorithms, where we first approximate the target density with a general Gaussian mixture distribution and approximate the mixtures with an adaptive hat function approximation on rotated intervals. The Gaussian mixture approximation allows us to locate the essential parts of the target density, whereas the adaptive hat function approximation allows us to approximate the finer structure of the target density. We prove convergence rates for each of the integration techniques based on quasi-Monte Carlo sampling for integrands with bounded partial mixed derivatives. The employed algorithms are based on digital $(t,s)$-sequences over the finite field $\mathbb{F}_2$ and an inversion method. Numerical examples illustrate the performance of the algorithms for some target densities and integrands.

We consider sequential state and parameter learning in state-space models with intractable state transition and observation processes. By exploiting low-rank tensor-train (TT) decompositions, we propose new sequential learning methods for joint parameter and state estimation under the Bayesian framework. Our key innovation is the introduction of scalable function approximation tools such as TT for recursively learning the sequentially updated posterior distributions. The function approximation perspective of our methods offers tractable error analysis and potentially alleviates the particle degeneracy faced by many particle-based methods. In addition to the new insights into algorithmic design, our methods complement conventional particle-based methods. Our TT-based approximations naturally define conditional Knothe--Rosenblatt (KR) rearrangements that lead to filtering, smoothing and path estimation accompanying our sequential learning algorithms, which open the door to removing potential approximation bias. We also explore several preconditioning techniques based on either linear or nonlinear KR rearrangements to enhance the approximation power of TT for practical problems. We demonstrate the efficacy and efficiency of our proposed methods on several state-space models, in which our methods achieve state-of-the-art estimation accuracy and computational performance.

We introduce a new computational framework for estimating parameters in generalized generalized linear models (GGLM), a class of models that extends the popular generalized linear models (GLM) to account for dependencies among observations in spatio-temporal data. The proposed approach uses a monotone operator-based variational inequality method to overcome non-convexity in parameter estimation and provide guarantees for parameter recovery. The results can be applied to GLM and GGLM, focusing on spatio-temporal models. We also present online instance-based bounds using martingale concentrations inequalities. Finally, we demonstrate the performance of the algorithm using numerical simulations and a real data example for wildfire incidents.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

北京阿比特科技有限公司