亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Creating suitable diagrams for technical and scientific publications is challenging and time-consuming, as manual control over the layout is required to communicate information effectively. Existing diagramming tools usually allow modeling the diagrams via a textual domain-specific language (DSL) that can be rendered and auto-layouted or via a graphical editor. While auto-layout is fast, the results are often not satisfying for most publications. However, graphical editors are time-consuming to create large diagrams. The blended or hybrid modeling concept enables creating diagrams efficiently using a DSL and editing the rendered diagram via the graphical editor for fine-tuning. However, hybrid modeling editors are limited to individual diagram types and do not save the layout and style information in the textual description. Therefore, we propose HyLiMo, a hybrid live-synchronized modular diagramming editor. In HyLiMo, diagrams are created using an internal DSL and live synchronized with an interactive graphical editor for the rendered diagram, allowing a straightforward layout and style change, which is stored in the DSL code. HyLiMo is independent of specific diagram types, but we offer specific functionality for UML class diagrams. Using the language server protocol, we implement it as a web app and IDE extension. The results of our user study indicate that such an approach enables fast and precise diagramming.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Change detection as an interdisciplinary discipline in the field of computer vision and remote sensing at present has been receiving extensive attention and research. Due to the rapid development of society, the geographic information captured by remote sensing satellites is changing faster and more complex, which undoubtedly poses a higher challenge and highlights the value of change detection tasks. We propose MFDS-Net: Multi-Scale Feature Depth-Supervised Network for Remote Sensing Change Detection with Global Semantic and Detail Information (MFDS-Net) with the aim of achieving a more refined description of changing buildings as well as geographic information, enhancing the localisation of changing targets and the acquisition of weak features. To achieve the research objectives, we use a modified ResNet_34 as backbone network to perform feature extraction and DO-Conv as an alternative to traditional convolution to better focus on the association between feature information and to obtain better training results. We propose the Global Semantic Enhancement Module (GSEM) to enhance the processing of high-level semantic information from a global perspective. The Differential Feature Integration Module (DFIM) is proposed to strengthen the fusion of different depth feature information, achieving learning and extraction of differential features. The entire network is trained and optimized using a deep supervision mechanism. The experimental outcomes of MFDS-Net surpass those of current mainstream change detection networks. On the LEVIR dataset, it achieved an F1 score of 91.589 and IoU of 84.483, on the WHU dataset, the scores were F1: 92.384 and IoU: 86.807, and on the GZ-CD dataset, the scores were F1: 86.377 and IoU: 76.021. The code is available at //github.com/AOZAKIiii/MFDS-Net

We introduce a new regression framework designed to deal with large-scale, complex data that lies around a low-dimensional manifold with noises. Our approach first constructs a graph representation, referred to as the skeleton, to capture the underlying geometric structure. We then define metrics on the skeleton graph and apply nonparametric regression techniques, along with feature transformations based on the graph, to estimate the regression function. We also discuss the limitations of some nonparametric regressors with respect to the general metric space such as the skeleton graph. The proposed regression framework suggests a novel way to deal with data with underlying geometric structures and provides additional advantages in handling the union of multiple manifolds, additive noises, and noisy observations. We provide statistical guarantees for the proposed method and demonstrate its effectiveness through simulations and real data examples.

For long document summarization, discourse structure is important to discern the key content of the text and the differences in importance level between sentences. Unfortunately, the integration of rhetorical structure theory (RST) into parameter-efficient fine-tuning strategies for long document summarization remains unexplored. Therefore, this paper introduces RST-LoRA and proposes four RST-aware variants to explicitly incorporate RST into the LoRA model. Our empirical evaluation demonstrates that incorporating the type and uncertainty of rhetorical relations can complementarily enhance the performance of LoRA in summarization tasks. Furthermore, the best-performing variant we introduced outperforms the vanilla LoRA and full-parameter fine-tuning models, as confirmed by multiple automatic and human evaluations, and even surpasses previous state-of-the-art methods.

Confidence scores of automatic speech recognition (ASR) outputs are often inadequately communicated, preventing its seamless integration into analytical workflows. In this paper, we introduce ConFides, a visual analytic system developed in collaboration with intelligence analysts to address this issue. ConFides aims to aid exploration and post-AI-transcription editing by visually representing the confidence associated with the transcription. We demonstrate how our tool can assist intelligence analysts who use ASR outputs in their analytical and exploratory tasks and how it can help mitigate misinterpretation of crucial information. We also discuss opportunities for improving textual data cleaning and model transparency for human-machine collaboration.

This paper introduces PDEformer, a neural solver for partial differential equations (PDEs) capable of simultaneously addressing various types of PDEs. We propose to represent the PDE in the form of a computational graph, facilitating the seamless integration of both symbolic and numerical information inherent in a PDE. A graph Transformer and an implicit neural representation (INR) are employed to generate mesh-free predicted solutions. Following pretraining on data exhibiting a certain level of diversity, our model achieves zero-shot accuracies on benchmark datasets that is comparable to those of specifically trained expert models. Additionally, PDEformer demonstrates promising results in the inverse problem of PDE coefficient recovery.

Knowledge graphs (KGs), which store an extensive number of relational facts (head, relation, tail), serve various applications. While many downstream tasks highly rely on the expressive modeling and predictive embedding of KGs, most of the current KG representation learning methods, where each entity is embedded as a vector in the Euclidean space and each relation is embedded as a transformation, follow an entity ranking protocol. On one hand, such an embedding design cannot capture many-to-many relations. On the other hand, in many retrieval cases, the users wish to get an exact set of answers without any ranking, especially when the results are expected to be precise, e.g., which genes cause an illness. Such scenarios are commonly referred to as "set retrieval". This work presents a pioneering study on the KG set retrieval problem. We show that the set retrieval highly depends on expressive modeling of many-to-many relations, and propose a new KG embedding model SpherE to address this problem. SpherE is based on rotational embedding methods, but each entity is embedded as a sphere instead of a vector. While inheriting the high interpretability of rotational-based models, our SpherE can more expressively model one-to-many, many-to-one, and many-to-many relations. Through extensive experiments, we show that our SpherE can well address the set retrieval problem while still having a good predictive ability to infer missing facts. The code is available at //github.com/Violet24K/SpherE.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司