Airdrops are used by blockchain applications and protocols to attract an initial user base, and to grow the user base over time. In the case of many airdrops, tokens are distributed to select users as a "reward" for interacting with the underlying protocol, with a long-term goal of creating a loyal community that will generate genuine economic activity well after the airdrop. Although airdrops are widely used by the blockchain industry, a proper understanding of the factors contributing to an airdrop's success is generally lacking. In this work, we outline the design space for airdrops, and specify a reasonable list of outcomes that an airdrop should ideally result in. We then analyze on-chain data from several larger-scale airdrops to empirically evaluate the success of previous airdrops, with respect to our desiderata. In our analysis, we demonstrate that airdrop farmers frequently dispose of the lion's share of airdrops proceeds via exchanges. Our analysis is followed by an overview of common pitfalls that common airdrop designs lend themselves to, which are then used to suggest concrete guidelines for better airdrops.
Individual objects, whether users or services, within a specific region often exhibit similar network states due to their shared origin from the same city or autonomous system (AS). Despite this regional network similarity, many existing techniques overlook its potential, resulting in subpar performance arising from challenges such as data sparsity and label imbalance. In this paper, we introduce the regional-based dual latent state learning network(R2SL), a novel deep learning framework designed to overcome the pitfalls of traditional individual object-based prediction techniques in Quality of Service (QoS) prediction. Unlike its predecessors, R2SL captures the nuances of regional network behavior by deriving two distinct regional network latent states: the city-network latent state and the AS-network latent state. These states are constructed utilizing aggregated data from common regions rather than individual object data. Furthermore, R2SL adopts an enhanced Huber loss function that adjusts its linear loss component, providing a remedy for prevalent label imbalance issues. To cap off the prediction process, a multi-scale perception network is leveraged to interpret the integrated feature map, a fusion of regional network latent features and other pertinent information, ultimately accomplishing the QoS prediction. Through rigorous testing on real-world QoS datasets, R2SL demonstrates superior performance compared to prevailing state-of-the-art methods. Our R2SL approach ushers in an innovative avenue for precise QoS predictions by fully harnessing the regional network similarities inherent in objects.
Certifiable robustness gives the guarantee that small perturbations around an input to a classifier will not change the prediction. There are two approaches to provide certifiable robustness to adversarial examples: a) explicitly training classifiers with small Lipschitz constants, and b) Randomized smoothing, which adds random noise to the input to create a smooth classifier. We propose \textit{SPLITZ}, a practical and novel approach which leverages the synergistic benefits of both the above ideas into a single framework. Our main idea is to \textit{split} a classifier into two halves, constrain the Lipschitz constant of the first half, and smooth the second half via randomization. Motivation for \textit{SPLITZ} comes from the observation that many standard deep networks exhibit heterogeneity in Lipschitz constants across layers. \textit{SPLITZ} can exploit this heterogeneity while inheriting the scalability of randomized smoothing. We present a principled approach to train \textit{SPLITZ} and provide theoretical analysis to derive certified robustness guarantees during inference. We present a comprehensive comparison of robustness-accuracy tradeoffs and show that \textit{SPLITZ} consistently improves upon existing state-of-the-art approaches on MNIST and CIFAR-10 datasets. For instance, with $\ell_2$ norm perturbation budget of \textbf{$\epsilon=1$}, \textit{SPLITZ} achieves $\textbf{43.2\%}$ top-1 test accuracy on CIFAR-10 dataset compared to state-of-art top-1 test accuracy $\textbf{39.8\%}
Decompilers are widely used by security researchers and developers to reverse engineer executable code. While modern decompilers are adept at recovering instructions, control flow, and function boundaries, some useful information from the original source code, such as variable types and names, is lost during the compilation process. Our work aims to predict these variable types and names from the remaining information. We propose STRIDE, a lightweight technique that predicts variable names and types by matching sequences of decompiler tokens to those found in training data. We evaluate it on three benchmark datasets and find that STRIDE achieves comparable performance to state-of-the-art machine learning models for both variable retyping and renaming while being much simpler and faster. We perform a detailed comparison with two recent SOTA transformer-based models in order to understand the specific factors that make our technique effective. We implemented STRIDE in fewer than 1000 lines of Python and have open-sourced it under a permissive license at //github.com/hgarrereyn/STRIDE.
Session is an open-source, public-key-based secure messaging application which uses a set of decentralised storage servers and an onion routing protocol to send end-to-end encrypted messages with minimal exposure of user metadata. It does this while providing the common features expected of mainstream messaging applications, such as multi-device syncing, offline inboxes, and voice/video calling.
Prompt-based interfaces for Large Language Models (LLMs) have made prototyping and building AI-powered applications easier than ever before. However, identifying potential harms that may arise from AI applications remains a challenge, particularly during prompt-based prototyping. To address this, we present Farsight, a novel in situ interactive tool that helps people identify potential harms from the AI applications they are prototyping. Based on a user's prompt, Farsight highlights news articles about relevant AI incidents and allows users to explore and edit LLM-generated use cases, stakeholders, and harms. We report design insights from a co-design study with 10 AI prototypers and findings from a user study with 42 AI prototypers. After using Farsight, AI prototypers in our user study are better able to independently identify potential harms associated with a prompt and find our tool more useful and usable than existing resources. Their qualitative feedback also highlights that Farsight encourages them to focus on end-users and think beyond immediate harms. We discuss these findings and reflect on their implications for designing AI prototyping experiences that meaningfully engage with AI harms. Farsight is publicly accessible at: //PAIR-code.github.io/farsight.
As the parameter size of large language models (LLMs) continues to expand, the need for a large memory footprint and high communication bandwidth have become significant bottlenecks for the training and inference of LLMs. To mitigate these bottlenecks, various tensor compression techniques have been proposed to reduce the data size, thereby alleviating memory requirements and communication pressure. Our research found that video codecs, despite being originally designed for compressing videos, show excellent efficiency when compressing various types of tensors. We demonstrate that video codecs can be versatile and general-purpose tensor codecs while achieving the state-of-the-art compression efficiency in various tasks. We further make use of the hardware video encoding and decoding module available on GPUs to create a framework capable of both inference and training with video codecs repurposed as tensor codecs. This greatly reduces the requirement for memory capacity and communication bandwidth, enabling training and inference of large models on consumer-grade GPUs.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.
To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.