亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce AdaSub, a stochastic optimization algorithm that computes a search direction based on second-order information in a low-dimensional subspace that is defined adaptively based on available current and past information. Compared to first-order methods, second-order methods exhibit better convergence characteristics, but the need to compute the Hessian matrix at each iteration results in excessive computational expenses, making them impractical. To address this issue, our approach enables the management of computational expenses and algorithm efficiency by enabling the selection of the subspace dimension for the search. Our code is freely available on GitHub, and our preliminary numerical results demonstrate that AdaSub surpasses popular stochastic optimizers in terms of time and number of iterations required to reach a given accuracy.

相關內容

There is a growing need to gain insight into language model capabilities that relate to sensitive topics, such as bioterrorism or cyberwarfare. However, traditional open source benchmarks are not fit for the task, due to the associated practice of publishing the correct answers in human-readable form. At the same time, enforcing mandatory closed-quarters evaluations might stifle development and erode trust. In this context, we propose hashmarking, a protocol for evaluating language models in the open without having to disclose the correct answers. In its simplest form, a hashmark is a benchmark whose reference solutions have been cryptographically hashed prior to publication. Following an overview of the proposed evaluation protocol, we go on to assess its resilience against traditional attack vectors (e.g. rainbow table attacks), as well as against failure modes unique to increasingly capable generative models.

This work presents and extends a known spigot-algorithm for computing square-roots, digit-by-digit, that is suitable for calculation by hand or an abacus, using only addition and subtraction. We offer an elementary proof of correctness for the original algorithm, then present a corresponding spigot-algorithm for computing cube-roots. Finally, we generalize the algorithm, so as to find $r$-th roots, and show how to optimize the algorithm for any $r$. The resulting algorithms require only integer addition and subtraction.

Private computation of nonlinear functions, such as Rectified Linear Units (ReLUs) and max-pooling operations, in deep neural networks (DNNs) poses significant challenges in terms of storage, bandwidth, and time consumption. To address these challenges, there has been a growing interest in utilizing privacy-preserving techniques that leverage polynomial activation functions and kernelized convolutions as alternatives to traditional ReLUs. However, these alternative approaches often suffer from a trade-off between achieving faster private inference (PI) and sacrificing model accuracy. In particular, when applied to much deeper networks, these methods encounter training instabilities, leading to issues like exploding gradients (resulting in NaNs) or suboptimal approximations. In this study, we focus on PolyKervNets, a technique known for offering improved dynamic approximations in smaller networks but still facing instabilities in larger and more complex networks. Our primary objective is to empirically explore optimization-based training recipes to enhance the performance of PolyKervNets in larger networks. By doing so, we aim to potentially eliminate the need for traditional nonlinear activation functions, thereby advancing the state-of-the-art in privacy-preserving deep neural network architectures. Code can be found on GitHub at: \url{//github.com/tolusophy/PolyKervNets/}

Identifying speakers of quotations in narratives is an important task in literary analysis, with challenging scenarios including the out-of-domain inference for unseen speakers, and non-explicit cases where there are no speaker mentions in surrounding context. In this work, we propose a simple and effective approach SIG, a generation-based method that verbalizes the task and quotation input based on designed prompt templates, which also enables easy integration of other auxiliary tasks that further bolster the speaker identification performance. The prediction can either come from direct generation by the model, or be determined by the highest generation probability of each speaker candidate. Based on our approach design, SIG supports out-of-domain evaluation, and achieves open-world classification paradigm that is able to accept any forms of candidate input. We perform both cross-domain evaluation and in-domain evaluation on PDNC, the largest dataset of this task, where empirical results suggest that SIG outperforms previous baselines of complicated designs, as well as the zero-shot ChatGPT, especially excelling at those hard non-explicit scenarios by up to 17% improvement. Additional experiments on another dataset WP further corroborate the efficacy of SIG.

Radio frequency (RF) signal mapping, which is the process of analyzing and predicting the RF signal strength and distribution across specific areas, is crucial for cellular network planning and deployment. Traditional approaches to RF signal mapping rely on statistical models constructed based on measurement data, which offer low complexity but often lack accuracy, or ray tracing tools, which provide enhanced precision for the target area but suffer from increased computational complexity. Recently, machine learning (ML) has emerged as a data-driven method for modeling RF signal propagation, which leverages models trained on synthetic datasets to perform RF signal mapping in "unseen" areas. In this paper, we present Geo2SigMap, an ML-based framework for efficient and high-fidelity RF signal mapping using geographic databases. First, we develop an automated framework that seamlessly integrates three open-source tools: OpenStreetMap (geographic databases), Blender (computer graphics), and Sionna (ray tracing), enabling the efficient generation of large-scale 3D building maps and ray tracing models. Second, we propose a cascaded U-Net model, which is pre-trained on synthetic datasets and employed to generate detailed RF signal maps, leveraging environmental information and sparse measurement data. Finally, we evaluate the performance of Geo2SigMap via a real-world measurement campaign, where three types of user equipment (UE) collect over 45,000 data points related to cellular information from six LTE cells operating in the citizens broadband radio service (CBRS) band. Our results show that Geo2SigMap achieves an average root-mean-square-error (RMSE) of 6.04 dB for predicting the reference signal received power (RSRP) at the UE, representing an average RMSE improvement of 3.59 dB compared to existing methods.

With autonomous industries on the rise, domain adaptation of the visual perception stack is an important research direction due to the cost savings promise. Much prior art was dedicated to domain-adaptive semantic segmentation in the synthetic-to-real context. Despite being a crucial output of the perception stack, panoptic segmentation has been largely overlooked by the domain adaptation community. Therefore, we revisit well-performing domain adaptation strategies from other fields, adapt them to panoptic segmentation, and show that they can effectively enhance panoptic domain adaptation. Further, we study the panoptic network design and propose a novel architecture (EDAPS) designed explicitly for domain-adaptive panoptic segmentation. It uses a shared, domain-robust transformer encoder to facilitate the joint adaptation of semantic and instance features, but task-specific decoders tailored for the specific requirements of both domain-adaptive semantic and instance segmentation. As a result, the performance gap seen in challenging panoptic benchmarks is substantially narrowed. EDAPS significantly improves the state-of-the-art performance for panoptic segmentation UDA by a large margin of 20% on SYNTHIA-to-Cityscapes and even 72% on the more challenging SYNTHIA-to-Mapillary Vistas. The implementation is available at //github.com/susaha/edaps.

Deep learning-based algorithms have seen a massive popularity in different areas of remote sensing image analysis over the past decade. Recently, transformers-based architectures, originally introduced in natural language processing, have pervaded computer vision field where the self-attention mechanism has been utilized as a replacement to the popular convolution operator for capturing long-range dependencies. Inspired by recent advances in computer vision, remote sensing community has also witnessed an increased exploration of vision transformers for a diverse set of tasks. Although a number of surveys have focused on transformers in computer vision in general, to the best of our knowledge we are the first to present a systematic review of recent advances based on transformers in remote sensing. Our survey covers more than 60 recent transformers-based methods for different remote sensing problems in sub-areas of remote sensing: very high-resolution (VHR), hyperspectral (HSI) and synthetic aperture radar (SAR) imagery. We conclude the survey by discussing different challenges and open issues of transformers in remote sensing. Additionally, we intend to frequently update and maintain the latest transformers in remote sensing papers with their respective code at: //github.com/VIROBO-15/Transformer-in-Remote-Sensing

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司