亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mendelian randomization (MR) is an instrumental variable (IV) approach to infer causal relationships between exposures and outcomes with genome-wide association studies (GWAS) summary data. However, the multivariable inverse-variance weighting (IVW) approach, which serves as the foundation for most MR approaches, cannot yield unbiased causal effect estimates in the presence of many weak IVs. To address this problem, we proposed the MR using Bias-corrected Estimating Equation (MRBEE) that can infer unbiased causal relationships with many weak IVs and account for horizontal pleiotropy simultaneously. While the practical significance of MRBEE was demonstrated in our parallel work (Lorincz-Comi (2023)), this paper established the statistical theories of multivariable IVW and MRBEE with many weak IVs. First, we showed that the bias of the multivariable IVW estimate is caused by the error-in-variable bias, whose scale and direction are inflated and influenced by weak instrument bias and sample overlaps of exposures and outcome GWAS cohorts, respectively. Second, we investigated the asymptotic properties of multivariable IVW and MRBEE, showing that MRBEE outperforms multivariable IVW regarding unbiasedness of causal effect estimation and asymptotic validity of causal inference. Finally, we applied MRBEE to examine myopia and revealed that education and outdoor activity are causal to myopia whereas indoor activity is not.

相關內容

Instrumental variable (IV) methods are used to estimate causal effects in settings with unobserved confounding, where we cannot directly experiment on the treatment variable. Instruments are variables which only affect the outcome indirectly via the treatment variable(s). Most IV applications focus on low-dimensional treatments and crucially require at least as many instruments as treatments. This assumption is restrictive: in the natural sciences we often seek to infer causal effects of high-dimensional treatments (e.g., the effect of gene expressions or microbiota on health and disease), but can only run few experiments with a limited number of instruments (e.g., drugs or antibiotics). In such underspecified problems, the full treatment effect is not identifiable in a single experiment even in the linear case. We show that one can still reliably recover the projection of the treatment effect onto the instrumented subspace and develop techniques to consistently combine such partial estimates from different sets of instruments. We then leverage our combined estimators in an algorithm that iteratively proposes the most informative instruments at each round of experimentation to maximize the overall information about the full causal effect.

Domain generalization (DG) aims to learn from multiple source domains a model that can generalize well on unseen target domains. Existing DG methods mainly learn the representations with invariant marginal distribution of the input features, however, the invariance of the conditional distribution of the labels given the input features is more essential for unknown domain prediction. Meanwhile, the existing of unobserved confounders which affect the input features and labels simultaneously cause spurious correlation and hinder the learning of the invariant relationship contained in the conditional distribution. Interestingly, with a causal view on the data generating process, we find that the input features of one domain are valid instrumental variables for other domains. Inspired by this finding, we propose an instrumental variable-driven DG method (IV-DG) by removing the bias of the unobserved confounders with two-stage learning. In the first stage, it learns the conditional distribution of the input features of one domain given input features of another domain. In the second stage, it estimates the relationship by predicting labels with the learned conditional distribution. Theoretical analyses and simulation experiments show that it accurately captures the invariant relationship. Extensive experiments on real-world datasets demonstrate that IV-DG method yields state-of-the-art results.

In this paper, we study the problem of robust sparse mean estimation, where the goal is to estimate a $k$-sparse mean from a collection of partially corrupted samples drawn from a heavy-tailed distribution. Existing estimators face two critical challenges in this setting. First, they are limited by a conjectured computational-statistical tradeoff, implying that any computationally efficient algorithm needs $\tilde\Omega(k^2)$ samples, while its statistically-optimal counterpart only requires $\tilde O(k)$ samples. Second, the existing estimators fall short of practical use as they scale poorly with the ambient dimension. This paper presents a simple mean estimator that overcomes both challenges under moderate conditions: it runs in near-linear time and memory (both with respect to the ambient dimension) while requiring only $\tilde O(k)$ samples to recover the true mean. At the core of our method lies an incremental learning phenomenon: we introduce a simple nonconvex framework that can incrementally learn the top-$k$ nonzero elements of the mean while keeping the zero elements arbitrarily small. Unlike existing estimators, our method does not need any prior knowledge of the sparsity level $k$. We prove the optimality of our estimator by providing a matching information-theoretic lower bound. Finally, we conduct a series of simulations to corroborate our theoretical findings. Our code is available at //github.com/huihui0902/Robust_mean_estimation.

Discovering causal relations from observational data is important. The existence of unobserved variables, such as latent confounders or mediators, can mislead the causal identification. To address this issue, proximal causal discovery methods proposed to adjust for the bias with the proxy of the unobserved variable. However, these methods presumed the data is discrete, which limits their real-world application. In this paper, we propose a proximal causal discovery method that can well handle the continuous variables. Our observation is that discretizing continuous variables can can lead to serious errors and comprise the power of the proxy. Therefore, to use proxy variables in the continuous case, the critical point is to control the discretization error. To this end, we identify mild regularity conditions on the conditional distributions, enabling us to control the discretization error to an infinitesimal level, as long as the proxy is discretized with sufficiently fine, finite bins. Based on this, we design a proxy-based hypothesis test for identifying causal relationships when unobserved variables are present. Our test is consistent, meaning it has ideal power when large samples are available. We demonstrate the effectiveness of our method using synthetic and real-world data.

This paper investigates Gaussian copula mixture models (GCMM), which are an extension of Gaussian mixture models (GMM) that incorporate copula concepts. The paper presents the mathematical definition of GCMM and explores the properties of its likelihood function. Additionally, the paper proposes extended Expectation Maximum algorithms to estimate parameters for the mixture of copulas. The marginal distributions corresponding to each component are estimated separately using nonparametric statistical methods. In the experiment, GCMM demonstrates improved goodness-of-fitting compared to GMM when using the same number of clusters. Furthermore, GCMM has the ability to leverage un-synchronized data across dimensions for more comprehensive data analysis.

A novel problem of improving causal effect estimation accuracy with the help of knowledge transfer under the same covariate (or feature) space setting, i.e., homogeneous transfer learning (TL), is studied, referred to as the Transfer Causal Learning (TCL) problem. While most recent efforts in adapting TL techniques to estimate average causal effect (ACE) have been focused on the heterogeneous covariate space setting, those methods are inadequate for tackling the TCL problem since their algorithm designs are based on the decomposition into shared and domain-specific covariate spaces. To address this issue, we propose a generic framework called $\ell_1$-TCL, which incorporates $\ell_1$ regularized TL for nuisance parameter estimation and downstream plug-in ACE estimators, including outcome regression, inverse probability weighted, and doubly robust estimators. Most importantly, with the help of Lasso for high-dimensional regression, we establish non-asymptotic recovery guarantees for the generalized linear model (GLM) under the sparsity assumption for the proposed $\ell_1$-TCL. From an empirical perspective, $\ell_1$-TCL is a generic learning framework that can incorporate not only GLM but also many recently developed non-parametric methods, which can enhance robustness to model mis-specification. We demonstrate this empirical benefit through extensive numerical simulation by incorporating both GLM and recent neural network-based approaches in $\ell_1$-TCL, which shows improved performance compared with existing TL approaches for ACE estimation. Furthermore, our $\ell_1$-TCL framework is subsequently applied to a real study, revealing that vasopressor therapy could prevent 28-day mortality within septic patients, which all baseline approaches fail to show.

Applications of CAR for balancing continuous covariates remain comparatively rare, especially in multi-treatment clinical trials, and the theoretical properties of multi-treatment CAR have remained largely elusive for decades. In this paper, we consider a general framework of CAR procedures for multi-treatment clinal trials which can balance general covariate features, such as quadratic and interaction terms which can be discrete, continuous, and mixing. We show that under widely satisfied conditions the proposed procedures have superior balancing properties; in particular, the convergence rate of imbalance vectors can attain the best rate $O_P(1)$ for discrete covariates, continuous covariates, or combinations of both discrete and continuous covariates, and at the same time, the convergence rate of the imbalance of unobserved covariates is $O_P(\sqrt n)$, where $n$ is the sample size. The general framework unifies many existing methods and related theories, introduces a much broader class of new and useful CAR procedures, and provides new insights and a complete picture of the properties of CAR procedures. The favorable balancing properties lead to the precision of the treatment effect test in the presence of a heteroscedastic linear model with dependent covariate features. As an application, the properties of the test of treatment effect with unobserved covariates are studied under the CAR procedures, and consistent tests are proposed so that the test has an asymptotic precise type I error even if the working model is wrong and covariates are unobserved in the analysis.

This work studies the estimation of many statistical quantiles under differential privacy. More precisely, given a distribution and access to i.i.d. samples from it, we study the estimation of the inverse of its cumulative distribution function (the quantile function) at specific points. For instance, this task is of key importance in private data generation. We present two different approaches. The first one consists in privately estimating the empirical quantiles of the samples and using this result as an estimator of the quantiles of the distribution. In particular, we study the statistical properties of the recently published algorithm introduced by Kaplan et al. 2022 that privately estimates the quantiles recursively. The second approach is to use techniques of density estimation in order to uniformly estimate the quantile function on an interval. In particular, we show that there is a tradeoff between the two methods. When we want to estimate many quantiles, it is better to estimate the density rather than estimating the quantile function at specific points.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司