亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the wheat nutrient deficiencies classification challenge, we present the DividE and EnseMble (DEEM) method for progressive test data predictions. We find that (1) test images are provided in the challenge; (2) samples are equipped with their collection dates; (3) the samples of different dates show notable discrepancies. Based on the findings, we partition the dataset into discrete groups by the dates and train models on each divided group. We then adopt the pseudo-labeling approach to label the test data and incorporate those with high confidence into the training set. In pseudo-labeling, we leverage models ensemble with different architectures to enhance the reliability of predictions. The pseudo-labeling and ensembled model training are iteratively conducted until all test samples are labeled. Finally, the separated models for each group are unified to obtain the model for the whole dataset. Our method achieves an average of 93.6\% Top-1 test accuracy~(94.0\% on WW2020 and 93.2\% on WR2021) and wins the 1$st$ place in the Deep Nutrient Deficiency Challenge~\footnote{//cvppa2023.github.io/challenges/}.

相關內容

Artificial Intelligence (AI), particularly through the advent of large-scale generative AI (GenAI) models such as Large Language Models (LLMs), has become a transformative element in contemporary technology. While these models have unlocked new possibilities, they simultaneously present significant challenges, such as concerns over data privacy and the propensity to generate misleading or fabricated content. Current frameworks for Responsible AI (RAI) often fall short in providing the granular guidance necessary for tangible application, especially for Accountability-a principle that is pivotal for ensuring transparent and auditable decision-making, bolstering public trust, and meeting increasing regulatory expectations. This study bridges the accountability gap by introducing a comprehensive metrics catalogue, formulated through a systematic multivocal literature review (MLR) that integrates findings from both academic and grey literature. Our catalogue delineates process metrics that underpin procedural integrity, resource metrics that provide necessary tools and frameworks, and product metrics that reflect the outputs of AI systems. This tripartite framework is designed to operationalize Accountability in AI, with a special emphasis on addressing the intricacies of GenAI. The proposed metrics catalogue provides a robust framework for instilling Accountability in AI systems. It offers practical, actionable guidance for organizations, thereby shaping responsible practices in the field.

We prove lower bounds for the Minimum Circuit Size Problem (MCSP) in the Sum-of-Squares (SoS) proof system. Our main result is that for every Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$, SoS requires degree $\Omega(s^{1-\epsilon})$ to prove that $f$ does not have circuits of size $s$ (for any $s > \mathrm{poly}(n)$). As a corollary we obtain that there are no low degree SoS proofs of the statement NP $\not \subseteq $ P/poly. We also show that for any $0 < \alpha < 1$ there are Boolean functions with circuit complexity larger than $2^{n^{\alpha}}$ but SoS requires size $2^{2^{\Omega(n^{\alpha})}}$ to prove this. In addition we prove analogous results on the minimum \emph{monotone} circuit size for monotone Boolean slice functions. Our approach is quite general. Namely, we show that if a proof system $Q$ has strong enough constraint satisfaction problem lower bounds that only depend on good expansion of the constraint-variable incidence graph and, furthermore, $Q$ is expressive enough that variables can be substituted by local Boolean functions, then the MCSP problem is hard for $Q$.

Scoring student-drawn models is time-consuming. Recently released GPT-4V provides a unique opportunity to advance scientific modeling practices by leveraging the powerful image processing capability. To test this ability specifically for automatic scoring, we developed a method NERIF (Notation-Enhanced Rubric Instruction for Few-shot Learning) employing instructional note and rubrics to prompt GPT-4V to score students' drawn models for science phenomena. We randomly selected a set of balanced data (N = 900) that includes student-drawn models for six modeling assessment tasks. Each model received a score from GPT-4V ranging at three levels: 'Beginning,' 'Developing,' or 'Proficient' according to scoring rubrics. GPT-4V scores were compared with human experts' scores to calculate scoring accuracy. Results show that GPT-4V's average scoring accuracy was mean =.51, SD = .037. Specifically, average scoring accuracy was .64 for the 'Beginning' class, .62 for the 'Developing' class, and .26 for the 'Proficient' class, indicating that more proficient models are more challenging to score. Further qualitative study reveals how GPT-4V retrieves information from image input, including problem context, example evaluations provided by human coders, and students' drawing models. We also uncovered how GPT-4V catches the characteristics of student-drawn models and narrates them in natural language. At last, we demonstrated how GPT-4V assigns scores to student-drawn models according to the given scoring rubric and instructional notes. Our findings suggest that the NERIF is an effective approach for employing GPT-4V to score drawn models. Even though there is space for GPT-4V to improve scoring accuracy, some mis-assigned scores seemed interpretable to experts. The results of this study show that utilizing GPT-4V for automatic scoring of student-drawn models is promising.

This work introduces a new, distributed implementation of the Ensemble Kalman Filter (EnKF) that allows for non-sequential assimilation of large datasets in high-dimensional problems. The traditional EnKF algorithm is computationally intensive and exhibits difficulties in applications requiring interaction with the background covariance matrix, prompting the use of methods like sequential assimilation which can introduce unwanted consequences, such as dependency on observation ordering. Our implementation leverages recent advancements in distributed computing to enable the construction and use of the full model error covariance matrix in distributed memory, allowing for single-batch assimilation of all observations and eliminating order dependencies. Comparative performance assessments, involving both synthetic and real-world paleoclimatic reconstruction applications, indicate that the new, non-sequential implementation outperforms the traditional, sequential one.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.

The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has, without exaggeration, revolutionized the fields of natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage ranking architectures and learned dense representations that attempt to perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond the typical sentence-by-sentence processing approaches used in NLP, and techniques for addressing the tradeoff between effectiveness (result quality) and efficiency (query latency). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.

We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

北京阿比特科技有限公司