Objective: The NEX project has developed an integrated Internet of Things (IoT) system coupled with data analytics to offer unobtrusive health and wellness monitoring supporting older adults living independently at home. Monitoring {currently} involves visualising a set of automatically detected activities of daily living (ADLs) for each participant. The detection of ADLs is achieved {} to allow the incorporation of additional participants whose ADLs are detected without re-training the system. Methods: Following an extensive User Needs and Requirements study involving 426 participants, a pilot trial and a friendly trial of the deployment, an Action Research Cycle (ARC) trial was completed. This involved 23 participants over a 10-week period each with c.20 IoT sensors in their homes. During the ARC trial, participants each took part in two data-informed briefings which presented visualisations of their own in-home activities. The briefings also gathered training data on the accuracy of detected activities. Association rule mining was then used on the combination of data from sensors and participant feedback to improve the automatic detection of ADLs. Results: Association rule mining was used to detect a range of ADLs for each participant independently of others and was then used to detect ADLs across participants using a single set of rules {for each ADL}. This allows additional participants to be added without the necessity of them providing training data. Conclusions: Additional participants can be added to the NEX system without the necessity to re-train the system for automatic detection of the set of their activities of daily living.
We present a framework for approximate Bayesian inference when only a limited number of noisy log-likelihood evaluations can be obtained due to computational constraints, which is becoming increasingly common for applications of complex models. We model the log-likelihood function using a Gaussian process (GP) and the main methodological innovation is to apply this model to emulate the progression that an exact Metropolis-Hastings (MH) sampler would take if it was applicable. Informative log-likelihood evaluation locations are selected using a sequential experimental design strategy until the MH accept/reject decision is done accurately enough according to the GP model. The resulting approximate sampler is conceptually simple and sample-efficient. It is also more robust to violations of GP modelling assumptions compared with earlier, related "Bayesian optimisation-like" methods tailored for Bayesian inference. We discuss some theoretical aspects and various interpretations of the resulting approximate MH sampler, and demonstrate its benefits in the context of Bayesian and generalised Bayesian likelihood-free inference for simulator-based statistical models.
Gaussian elimination (GE) is the most used dense linear solver. Error analysis of GE with selected pivoting strategies on well-conditioned systems can focus on studying the behavior of growth factors. Although exponential growth is possible with GE with partial pivoting (GEPP), growth tends to stay much smaller in practice. Support for this behavior was provided last year by Huang and Tikhomirov's average-case analysis of GEPP, which showed GEPP growth factors stay at most polynomial with very high probability when using small Gaussian perturbations. GE with complete pivoting (GECP) has also seen a lot of recent interest, with recent improvements to lower bounds on worst-case GECP growth provided by Edelman and Urschel earlier this year. We are interested in studying how GEPP and GECP behave on the same linear systems as well as studying large growth on particular subclasses of matrices, including orthogonal matrices. We will also study systems when GECP leads to larger growth than GEPP, which will lead to new empirical lower bounds on how much worse GECP can behave compared to GEPP in terms of growth. We also present an empirical study on a family of exponential GEPP growth matrices whose polynomial behavior in small neighborhoods limits to the initial GECP growth factor.
This paper proposes a new framework using physics-informed neural networks (PINNs) to simulate complex structural systems that consist of single and double beams based on Euler-Bernoulli and Timoshenko theory, where the double beams are connected with a Winkler foundation. In particular, forward and inverse problems for the Euler-Bernoulli and Timoshenko partial differential equations (PDEs) are solved using nondimensional equations with the physics-informed loss function. Higher-order complex beam PDEs are efficiently solved for forward problems to compute the transverse displacements and cross-sectional rotations with less than 1e-3 percent error. Furthermore, inverse problems are robustly solved to determine the unknown dimensionless model parameters and applied force in the entire space-time domain, even in the case of noisy data. The results suggest that PINNs are a promising strategy for solving problems in engineering structures and machines involving beam systems.
We investigate the allocation of children to childcare facilities and propose solutions to overcome limitations in the current allocation mechanism. We introduce a natural preference domain and a priority structure that address these setbacks, aiming to enhance the allocation process. To achieve this, we present an adaptation of the Deferred Acceptance mechanism to our problem, which ensures strategy-proofness within our preference domain and yields the student-optimal stable matching. Finally, we provide a maximal domain for the existence of stable matchings using the properties that define our natural preference domain. Our results have practical implications for allocating indivisible bundles with complementarities.
This work provides a study of parameter estimators based on functions of Markov chains generated by some perturbations of the independence copula. We provide asymptotic distributions of maximum likelihood estimators and confidence intervals for copula parameters of several families of copulas introduced in Longla (2023). Another set of moment-like estimators is proposed along with a multivariate central limit theorem, that provides their asymptotic distributions. We investigate the particular case of Markov chains generated by sine copulas, sine-cosine copulas and the extended Farlie-Gumbel-Morgenstern copula family. Some tests of independence are proposed. A simulation study is provided for the three copula families of interest. This simulation proposes a comparative study of the two introduced estimators and the robust estimator of Longla and Peligrad (2021), showing advantages of the proposed work.
We consider a stationary Markov process that models certain queues with a bulk service of a fixed number $m$ of admitted customers. We find an integral expression of its transition probability function in terms of certain multi-orthogonal polynomials with respect to a system of distributions that contain measures supported on starlike subsets of the complex plane. We also study the corresponding steady state.
The ICH E9(R1) Addendum (International Council for Harmonization 2019) suggests treatment-policy as one of several strategies for addressing intercurrent events such as treatment withdrawal when defining an estimand. This strategy requires the monitoring of patients and collection of primary outcome data following termination of randomized treatment. However, when patients withdraw from a study before nominal completion this creates true missing data complicating the analysis. One possible way forward uses multiple imputation to replace the missing data based on a model for outcome on and off treatment prior to study withdrawal, often referred to as retrieved dropout multiple imputation. This article explores a novel approach to parameterizing this imputation model so that those parameters which may be difficult to estimate have mildly informative Bayesian priors applied during the imputation stage. A core reference-based model is combined with a compliance model, using both on- and off- treatment data to form an extended model for the purposes of imputation. This alleviates the problem of specifying a complex set of analysis rules to accommodate situations where parameters which influence the estimated value are not estimable or are poorly estimated, leading to unrealistically large standard errors in the resulting analysis.
Block majorization-minimization (BMM) is a simple iterative algorithm for nonconvex constrained optimization that sequentially minimizes majorizing surrogates of the objective function in each block coordinate while the other coordinates are held fixed. BMM entails a large class of optimization algorithms such as block coordinate descent and its proximal-point variant, expectation-minimization, and block projected gradient descent. We establish that for general constrained nonconvex optimization, BMM with strongly convex surrogates can produce an $\epsilon$-stationary point within $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$ iterations and asymptotically converges to the set of stationary points. Furthermore, we propose a trust-region variant of BMM that can handle surrogates that are only convex and still obtain the same iteration complexity and asymptotic stationarity. These results hold robustly even when the convex sub-problems are inexactly solved as long as the optimality gaps are summable. As an application, we show that a regularized version of the celebrated multiplicative update algorithm for nonnegative matrix factorization by Lee and Seung has iteration complexity of $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$. The same result holds for a wide class of regularized nonnegative tensor decomposition algorithms as well as the classical block projected gradient descent algorithm. These theoretical results are validated through various numerical experiments.
This paper aims to reconstruct the initial condition of a hyperbolic equation with an unknown damping coefficient. Our approach involves approximating the hyperbolic equation's solution by its truncated Fourier expansion in the time domain and using a polynomial-exponential basis. This truncation process facilitates the elimination of the time variable, consequently, yielding a system of quasi-linear elliptic equations. To globally solve the system without needing an accurate initial guess, we employ the Carleman contraction principle. We provide several numerical examples to illustrate the efficacy of our method. The method not only delivers precise solutions but also showcases remarkable computational efficiency.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.