亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Learned Index Structures (LIS) view a sorted index as a model that learns the data distribution, takes a data element key as input, and outputs the predicted position of the key. The original LIS can only handle lookup operations with no support for updates, rendering it impractical to use for typical workloads. To address this limitation, recent studies have focused on designing efficient dynamic learned indexes. ALEX, as the pioneering dynamic learned index structures, enables dynamism by incorporating a series of design choices, including adaptive key space partitioning, dynamic model retraining, and sophisticated engineering and policies that prioritize read/write performance. While these design choices offer improved average-case performance, the emphasis on flexibility and performance increases the attack surface by allowing adversarial behaviors that maximize ALEX's memory space and time complexity in worst-case scenarios. In this work, we present the first systematic investigation of algorithmic complexity attacks (ACAs) targeting the worst-case scenarios of ALEX. We introduce new ACAs that fall into two categories, space ACAs and time ACAs, which target the memory space and time complexity, respectively. First, our space ACA on data nodes exploits ALEX's gapped array layout and uses Multiple-Choice Knapsack (MCK) to generate an optimal adversarial insertion plan for maximizing the memory consumption at the data node level. Second, our space ACA on internal nodes exploits ALEX's catastrophic cost mitigation mechanism, causing an out-of-memory error with only a few hundred adversarial insertions. Third, our time ACA generates pathological insertions to increase the disparity between the actual key distribution and the linear models of data nodes, deteriorating the runtime performance by up to 1,641X compared to ALEX operating under legitimate workloads.

相關內容

Relational database management systems (RDBMS) are widely used for the storage and retrieval of structured data. To derive insights beyond statistical aggregation, we typically have to extract specific subdatasets from the database using conventional database operations, and then apply deep neural networks (DNN) training and inference on these respective subdatasets in a separate machine learning system. The process can be prohibitively expensive, especially when there are a combinatorial number of subdatasets extracted for different analytical purposes. This calls for efficient in-database support of advanced analytical methods In this paper, we introduce LEADS, a novel SQL-aware dynamic model slicing technique to customize models for subdatasets specified by SQL queries. LEADS improves the predictive modeling of structured data via the mixture of experts (MoE) technique and maintains inference efficiency by a SQL-aware gating network. At the core of LEADS is the construction of a general model with multiple expert sub-models via MoE trained over the entire database. This SQL-aware MoE technique scales up the modeling capacity, enhances effectiveness, and preserves efficiency by activating only necessary experts via the gating network during inference. Additionally, we introduce two regularization terms during the training process of LEADS to strike a balance between effectiveness and efficiency. We also design and build an in-database inference system, called INDICES, to support end-to-end advanced structured data analytics by non-intrusively incorporating LEADS onto PostgreSQL. Our extensive experiments on real-world datasets demonstrate that LEADS consistently outperforms baseline models, and INDICES delivers effective in-database analytics with a considerable reduction in inference latency compared to traditional solutions.

This project develops a pseudo-random number generator (PRNG) using the logistic map, implemented in Verilog HDL on an FPGA and processes its output through a Central Limit Theorem (CLT) function to achieve a Gaussian distribution. The system integrates additional FPGA modules for real-time interaction and visualisation, including a clock generator, UART interface, XADC, and a 7-segment display driver. These components facilitate the direct display of PRNG values on the FPGA and the transmission of data to a laptop for histogram analysis, verifying the Gaussian nature of the output. This approach demonstrates the practical application of chaotic systems for generating Gaussian-distributed pseudo-random numbers in digital hardware, highlighting the logistic map's potential in PRNG design.

Retraining machine learning models (ML) when new batches of data become available is an important task in real-world pipelines. Existing methods focus largely on greedy approaches to find the best-performing model for each batch, without considering the stability of the model's structure across retraining iterations. In this study, we propose a methodology for finding sequences of ML models that are stable across retraining iterations. We develop a mixed-integer optimization algorithm that is guaranteed to recover Pareto optimal models (in terms of the predictive power-stability trade-off) and an efficient polynomial-time algorithm that performs well in practice. Our method focuses on retaining consistent analytical insights -- which is important to model interpretability, ease of implementation, and fostering trust with users -- by using custom-defined distance metrics that can be directly incorporated into the optimization problem. Importantly, our method shows stronger stability than greedily trained models with a small, controllable sacrifice in model performance in a real-world case study. Using SHAP feature importance, we show that analytical insights are consistent across retraining iterations.

Temporal logics are widely used by the Formal Methods and AI communities. Linear Temporal Logic is a popular temporal logic and is valued for its ease of use as well as its balance between expressiveness and complexity. LTL is equivalent in expressiveness to Monadic First-Order Logic and satisfiability for LTL is PSPACE-complete. Linear Dynamic Logic (LDL), another temporal logic, is equivalent to Monadic Second-Order Logic, but its method of satisfiability checking cannot be applied to a nontrivial subset of LDL formulas. Here we introduce Automata Linear Dynamic Logic on Finite Traces (ALDL_f) and show that satisfiability for ALDL_f formulas is in PSPACE. A variant of Linear Dynamic Logic on Finite Traces (LDL_f), ALDL_f combines propositional logic with nondeterministic finite automata (NFA) to express temporal constraints. ALDL$_f$ is equivalent in expressiveness to Monadic Second-Order Logic. This is a gain in expressiveness over LTL at no cost.

State space models (SSMs) with selection mechanisms and hardware-aware architectures, namely Mamba, have recently demonstrated significant promise in long-sequence modeling. Since the self-attention mechanism in transformers has quadratic complexity with image size and increasing computational demands, the researchers are now exploring how to adapt Mamba for computer vision tasks. This paper is the first comprehensive survey aiming to provide an in-depth analysis of Mamba models in the field of computer vision. It begins by exploring the foundational concepts contributing to Mamba's success, including the state space model framework, selection mechanisms, and hardware-aware design. Next, we review these vision mamba models by categorizing them into foundational ones and enhancing them with techniques such as convolution, recurrence, and attention to improve their sophistication. We further delve into the widespread applications of Mamba in vision tasks, which include their use as a backbone in various levels of vision processing. This encompasses general visual tasks, Medical visual tasks (e.g., 2D / 3D segmentation, classification, and image registration, etc.), and Remote Sensing visual tasks. We specially introduce general visual tasks from two levels: High/Mid-level vision (e.g., Object detection, Segmentation, Video classification, etc.) and Low-level vision (e.g., Image super-resolution, Image restoration, Visual generation, etc.). We hope this endeavor will spark additional interest within the community to address current challenges and further apply Mamba models in computer vision.

The success of artificial intelligence (AI), and deep learning models in particular, has led to their widespread adoption across various industries due to their ability to process huge amounts of data and learn complex patterns. However, due to their lack of explainability, there are significant concerns regarding their use in critical sectors, such as finance and healthcare, where decision-making transparency is of paramount importance. In this paper, we provide a comparative survey of methods that aim to improve the explainability of deep learning models within the context of finance. We categorize the collection of explainable AI methods according to their corresponding characteristics, and we review the concerns and challenges of adopting explainable AI methods, together with future directions we deemed appropriate and important.

Federated learning (FL) has been proposed to protect data privacy and virtually assemble the isolated data silos by cooperatively training models among organizations without breaching privacy and security. However, FL faces heterogeneity from various aspects, including data space, statistical, and system heterogeneity. For example, collaborative organizations without conflict of interest often come from different areas and have heterogeneous data from different feature spaces. Participants may also want to train heterogeneous personalized local models due to non-IID and imbalanced data distribution and various resource-constrained devices. Therefore, heterogeneous FL is proposed to address the problem of heterogeneity in FL. In this survey, we comprehensively investigate the domain of heterogeneous FL in terms of data space, statistical, system, and model heterogeneity. We first give an overview of FL, including its definition and categorization. Then, We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective. We also investigate the transfer learning methodologies to tackle the heterogeneity in FL. We further present the applications of heterogeneous FL. Finally, we highlight the challenges and opportunities and envision promising future research directions toward new framework design and trustworthy approaches.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司