亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generative artificial intelligence (AI) is a widely popular technology that will have a profound impact on society and individuals. Less than a decade ago, it was thought that creative work would be among the last to be automated - yet today, we see AI encroaching on many creative domains. In this paper, we present the findings of a survey study on people's perceptions of text-to-image generation. We touch on participants' technical understanding of the emerging technology, their fears and concerns, and thoughts about risks and dangers of text-to-image generation to the individual and society. We find that while participants were aware of the risks and dangers associated with the technology, only few participants considered the technology to be a personal risk. The risks for others were more easy to recognize for participants. Artists were particularly seen at risk. Participants who had tried the technology rated its future importance lower than those who had not tried it. This result shows that many people are still oblivious of the potential personal risks of generative artificial intelligence and the impending societal changes associated with this technology.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Pan-sharpening, as one of the most commonly used techniques in remote sensing systems, aims to inject spatial details from panchromatic images into multispectral images (MS) to obtain high-resolution multispectral images. Since deep learning has received widespread attention because of its powerful fitting ability and efficient feature extraction, a variety of pan-sharpening methods have been proposed to achieve remarkable performance. However, current pan-sharpening methods usually require the paired panchromatic (PAN) and MS images as input, which limits their usage in some scenarios. To address this issue, in this paper we observe that the spatial details from PAN images are mainly high-frequency cues, i.e., the edges reflect the contour of input PAN images. This motivates us to develop a PAN-agnostic representation to store some base edges, so as to compose the contour for the corresponding PAN image via them. As a result, we can perform the pan-sharpening task with only the MS image when inference. To this end, a memory-based network is adapted to extract and memorize the spatial details during the training phase and is used to replace the process of obtaining spatial information from PAN images when inference, which is called Memory-based Spatial Details Network (MSDN). Finally, we integrate the proposed MSDN module into the existing deep learning-based pan-sharpening methods to achieve an end-to-end pan-sharpening network. With extensive experiments on the Gaofen1 and WorldView-4 satellites, we verify that our method constructs good spatial details without PAN images and achieves the best performance. The code is available at //github.com/Zhao-Tian-yi/Learning-to-Pan-sharpening-with-Memories-of-Spatial-Details.git.

Removing information from a machine learning model is a non-trivial task that requires to partially revert the training process. This task is unavoidable when sensitive data, such as credit card numbers or passwords, accidentally enter the model and need to be removed afterwards. Recently, different concepts for machine unlearning have been proposed to address this problem. While these approaches are effective in removing individual data points, they do not scale to scenarios where larger groups of features and labels need to be reverted. In this paper, we propose the first method for unlearning features and labels. Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters. It enables to adapt the influence of training data on a learning model retrospectively, thereby correcting data leaks and privacy issues. For learning models with strongly convex loss functions, our method provides certified unlearning with theoretical guarantees. For models with non-convex losses, we empirically show that unlearning features and labels is effective and significantly faster than other strategies.

Recoverable algorithms tolerate failures and recoveries of processes by using non-volatile memory. Of particular interest are self-implementations of key operations, in which a recoverable operation is implemented from its non-recoverable counterpart (in addition to reads and writes). This paper presents two self-implementations of the SWAP operation. One works in the system-wide failures model, where all processes fail and recover together, and the other in the independent failures model, where each process crashes and recovers independently of the other processes. Both algorithms are wait-free in crash-free executions, but their recovery code is blocking. We prove that this is inherent for the independent failures model. The impossibility result is proved for implementations of distinguishable operations using interfering functions, and in particular, it applies to a recoverable self-implementation of swap.

We introduce a new information-geometric structure associated with the dynamics on discrete objects such as graphs and hypergraphs. The presented setup consists of two dually flat structures built on the vertex and edge spaces, respectively. The former is the conventional duality between density and potential, e.g., the probability density and its logarithmic form induced by a convex thermodynamic function. The latter is the duality between flux and force induced by a convex and symmetric dissipation function, which drives the dynamics of the density. These two are connected topologically by the homological algebraic relation induced by the underlying discrete objects. The generalized gradient flow in this doubly dual flat structure is an extension of the gradient flows on Riemannian manifolds, which include Markov jump processes and nonlinear chemical reaction dynamics as well as the natural gradient and mirror descent. The information-geometric projections on this doubly dual flat structure lead to information-geometric extensions of the Helmholtz-Hodge decomposition and the Otto structure in $L^{2}$ Wasserstein geometry. The structure can be extended to non-gradient nonequilibrium flows, from which we also obtain the induced dually flat structure on cycle spaces. This abstract but general framework can extend the applicability of information geometry to various problems of linear and nonlinear dynamics.

Recurrent neural networks (RNNs) are known to be universal approximators of dynamic systems under fairly mild and general assumptions, making them good tools to process temporal information. However, RNNs usually suffer from the issues of vanishing and exploding gradients in the standard RNN training. Reservoir computing (RC), a special RNN where the recurrent weights are randomized and left untrained, has been introduced to overcome these issues and has demonstrated superior empirical performance in fields as diverse as natural language processing and wireless communications especially in scenarios where training samples are extremely limited. On the contrary, the theoretical grounding to support this observed performance has not been fully developed at the same pace. In this work, we show that RNNs can provide universal approximation of linear time-invariant (LTI) systems. Specifically, we show that RC can universally approximate a general LTI system. We present a clear signal processing interpretation of RC and utilize this understanding in the problem of simulating a generic LTI system through RC. Under this setup, we analytically characterize the optimal probability distribution function for generating the recurrent weights of the underlying RNN of the RC. We provide extensive numerical evaluations to validate the optimality of the derived optimum distribution of the recurrent weights of the RC for the LTI system simulation problem. Our work results in clear signal processing-based model interpretability of RC and provides theoretical explanation for the power of randomness in setting instead of training RC's recurrent weights. It further provides a complete optimum analytical characterization for the untrained recurrent weights, marking an important step towards explainable machine learning (XML) which is extremely important for applications where training samples are limited.

With the rapid proliferation of smart mobile devices, federated learning (FL) has been widely considered for application in wireless networks for distributed model training. However, data heterogeneity, e.g., non-independently identically distributions and different sizes of training data among clients, poses major challenges to wireless FL. Limited communication resources complicate the implementation of fair scheduling which is required for training on heterogeneous data, and further deteriorate the overall performance. To address this issue, this paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation. Specifically, we first develop a closed-form expression for an upper bound on the FL loss function, with a particular emphasis on data heterogeneity described by a dataset size vector and a data divergence vector. Then we formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE). Next, via the Lyapunov drift technique, we transform the CRE optimization problem into a series of tractable problems. Extensive experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.

Progress in artificial intelligence and machine learning over the past decade has been driven by the ability to train larger deep neural networks (DNNs), leading to a compute demand that far exceeds the growth in hardware performance afforded by Moore's law. Training DNNs is an extremely memory-intensive process, requiring not just the model weights but also activations and gradients for an entire minibatch to be stored. The need to provide high-density and low-leakage on-chip memory motivates the exploration of emerging non-volatile memory for training accelerators. Spin-Transfer-Torque MRAM (STT-MRAM) offers several desirable properties for training accelerators, including 3-4x higher density than SRAM, significantly reduced leakage power, high endurance and reasonable access time. On the one hand, MRAM write operations require high write energy and latency due to the need to ensure reliable switching. In this study, we perform a comprehensive device-to-system evaluation and co-optimization of STT-MRAM for efficient ML training accelerator design. We devised a cross-layer simulation framework to evaluate the effectiveness of STT-MRAM as a scratchpad replacing SRAM in a systolic-array-based DNN accelerator. To address the inefficiency of writes in STT-MRAM, we propose to reduce write voltage and duration. To evaluate the ensuing accuracy-efficiency trade-off, we conduct a thorough analysis of the error tolerance of input activations, weights, and errors during the training. We propose heterogeneous memory configurations that enable training convergence with good accuracy. We show that MRAM provide up to 15-22x improvement in system level energy across a suite of DNN benchmarks under iso-capacity and iso-area scenarios. Further optimizing STT-MRAM write operations can provide over 2x improvement in write energy for minimal degradation in application-level training accuracy.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.

The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.

北京阿比特科技有限公司