亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The biological neural systems evolved to adapt to ecological environment for efficiency and effectiveness, wherein neurons with heterogeneous structures and rich dynamics are optimized to accomplish complex cognitive tasks. Most of the current research of biologically inspired spiking neural networks (SNNs) are, however, grounded on a homogeneous neural coding scheme, which limits their overall performance in terms of accuracy, latency, efficiency, and robustness, etc. In this work, we argue that one should holistically design the network architecture to incorporate diverse neuronal functions and neural coding schemes for best performance. As an early attempt in this research direction, we put forward a hybrid neural coding framework that integrates multiple neural coding schemes discovered in neuroscience. We demonstrate that the proposed hybrid coding scheme achieves a comparable accuracy with the state-of-the-art SNNs with homogeneous neural coding on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets with less than eight time steps and at least 3.90x fewer computations. Furthermore, we demonstrate accurate, rapid, and robust sound source localization on SoClas dataset. This study yields valuable insights into the performance of various hybrid neural coding designs and hold significant implications for designing high performance SNNs.

相關內容

Deep graph clustering, which aims to group the nodes of a graph into disjoint clusters with deep neural networks, has achieved promising progress in recent years. However, the existing methods fail to scale to the large graph with million nodes. To solve this problem, a scalable deep graph clustering method (Dink-Net) is proposed with the idea of dilation and shrink. Firstly, by discriminating nodes, whether being corrupted by augmentations, representations are learned in a self-supervised manner. Meanwhile, the cluster centres are initialized as learnable neural parameters. Subsequently, the clustering distribution is optimized by minimizing the proposed cluster dilation loss and cluster shrink loss in an adversarial manner. By these settings, we unify the two-step clustering, i.e., representation learning and clustering optimization, into an end-to-end framework, guiding the network to learn clustering-friendly features. Besides, Dink-Net scales well to large graphs since the designed loss functions adopt the mini-batch data to optimize the clustering distribution even without performance drops. Both experimental results and theoretical analyses demonstrate the superiority of our method. Compared to the runner-up, Dink-Net achieves 9.62% NMI improvement on the ogbn-papers100M dataset with 111 million nodes and 1.6 billion edges. The source code is released at //github.com/yueliu1999/Dink-Net. Besides, a collection (papers, codes, and datasets) of deep graph clustering is shared at //github.com/yueliu1999/Awesome-Deep-Graph-Clustering.

Video Compressed Sensing (VCS) aims to reconstruct multiple frames from one single captured measurement, thus achieving high-speed scene recording with a low-frame-rate sensor. Although there have been impressive advances in VCS recently, those state-of-the-art (SOTA) methods also significantly increase model complexity and suffer from poor generality and robustness, which means that those networks need to be retrained to accommodate the new system. Such limitations hinder the real-time imaging and practical deployment of models. In this work, we propose a Sampling-Priors-Augmented Deep Unfolding Network (SPA-DUN) for efficient and robust VCS reconstruction. Under the optimization-inspired deep unfolding framework, a lightweight and efficient U-net is exploited to downsize the model while improving overall performance. Moreover, the prior knowledge from the sampling model is utilized to dynamically modulate the network features to enable single SPA-DUN to handle arbitrary sampling settings, augmenting interpretability and generality. Extensive experiments on both simulation and real datasets demonstrate that SPA-DUN is not only applicable for various sampling settings with one single model but also achieves SOTA performance with incredible efficiency.

Bayesian model comparison (BMC) offers a principled approach for assessing the relative merits of competing computational models and propagating uncertainty into model selection decisions. However, BMC is often intractable for the popular class of hierarchical models due to their high-dimensional nested parameter structure. To address this intractability, we propose a deep learning method for performing BMC on any set of hierarchical models which can be instantiated as probabilistic programs. Since our method enables amortized inference, it allows efficient re-estimation of posterior model probabilities and fast performance validation prior to any real-data application. In a series of extensive validation studies, we benchmark the performance of our method against the state-of-the-art bridge sampling method and demonstrate excellent amortized inference across all BMC settings. We then showcase our method by comparing four hierarchical evidence accumulation models that have previously been deemed intractable for BMC due to partly implicit likelihoods. In this application, we corroborate evidence for the recently proposed L\'evy flight model of decision-making and show how transfer learning can be leveraged to enhance training efficiency. We provide reproducible code for all analyses and an open-source implementation of our method.

The integrated development of city clusters has given rise to an increasing demand for intercity travel. Intercity ride-pooling service exhibits considerable potential in upgrading traditional intercity bus services by implementing demand-responsive enhancements. Nevertheless, its online operations suffer the inherent complexities due to the coupling of vehicle resource allocation among cities and pooled-ride vehicle routing. To tackle these challenges, this study proposes a two-level framework designed to facilitate online fleet management. Specifically, a novel multi-agent feudal reinforcement learning model is proposed at the upper level of the framework to cooperatively assign idle vehicles to different intercity lines, while the lower level updates the routes of vehicles using an adaptive large neighborhood search heuristic. Numerical studies based on the realistic dataset of Xiamen and its surrounding cities in China show that the proposed framework effectively mitigates the supply and demand imbalances, and achieves significant improvement in both the average daily system profit and order fulfillment ratio.

Deep learning techniques often perform poorly in the presence of domain shift, where the test data follows a different distribution than the training data. The most practically desirable approach to address this issue is Single Domain Generalization (S-DG), which aims to train robust models using data from a single source. Prior work on S-DG has primarily focused on using data augmentation techniques to generate diverse training data. In this paper, we explore an alternative approach by investigating the robustness of linear operators, such as convolution and dense layers commonly used in deep learning. We propose a novel operator called XCNorm that computes the normalized cross-correlation between weights and an input feature patch. This approach is invariant to both affine shifts and changes in energy within a local feature patch and eliminates the need for commonly used non-linear activation functions. We show that deep neural networks composed of this operator are robust to common semantic distribution shifts. Furthermore, our empirical results on single-domain generalization benchmarks demonstrate that our proposed technique performs comparably to the state-of-the-art methods.

Visual recognition is currently one of the most important and active research areas in computer vision, pattern recognition, and even the general field of artificial intelligence. It has great fundamental importance and strong industrial needs. Deep neural networks (DNNs) have largely boosted their performances on many concrete tasks, with the help of large amounts of training data and new powerful computation resources. Though recognition accuracy is usually the first concern for new progresses, efficiency is actually rather important and sometimes critical for both academic research and industrial applications. Moreover, insightful views on the opportunities and challenges of efficiency are also highly required for the entire community. While general surveys on the efficiency issue of DNNs have been done from various perspectives, as far as we are aware, scarcely any of them focused on visual recognition systematically, and thus it is unclear which progresses are applicable to it and what else should be concerned. In this paper, we present the review of the recent advances with our suggestions on the new possible directions towards improving the efficiency of DNN-related visual recognition approaches. We investigate not only from the model but also the data point of view (which is not the case in existing surveys), and focus on three most studied data types (images, videos and points). This paper attempts to provide a systematic summary via a comprehensive survey which can serve as a valuable reference and inspire both researchers and practitioners who work on visual recognition problems.

Dynamic neural network is an emerging research topic in deep learning. Compared to static models which have fixed computational graphs and parameters at the inference stage, dynamic networks can adapt their structures or parameters to different inputs, leading to notable advantages in terms of accuracy, computational efficiency, adaptiveness, etc. In this survey, we comprehensively review this rapidly developing area by dividing dynamic networks into three main categories: 1) instance-wise dynamic models that process each instance with data-dependent architectures or parameters; 2) spatial-wise dynamic networks that conduct adaptive computation with respect to different spatial locations of image data and 3) temporal-wise dynamic models that perform adaptive inference along the temporal dimension for sequential data such as videos and texts. The important research problems of dynamic networks, e.g., architecture design, decision making scheme, optimization technique and applications, are reviewed systematically. Finally, we discuss the open problems in this field together with interesting future research directions.

The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.

Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

北京阿比特科技有限公司