亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) present significant priority in text understanding and generation. However, LLMs suffer from the risk of generating harmful contents especially while being employed to applications. There are several black-box attack methods, such as Prompt Attack, which can change the behaviour of LLMs and induce LLMs to generate unexpected answers with harmful contents. Researchers are interested in Prompt Attack and Defense with LLMs, while there is no publicly available dataset to evaluate the abilities of defending prompt attack. In this paper, we introduce a Chinese Prompt Attack Dataset for LLMs, called CPAD. Our prompts aim to induce LLMs to generate unexpected outputs with several carefully designed prompt attack approaches and widely concerned attacking contents. Different from previous datasets involving safety estimation, We construct the prompts considering three dimensions: contents, attacking methods and goals, thus the responses can be easily evaluated and analysed. We run several well-known Chinese LLMs on our dataset, and the results show that our prompts are significantly harmful to LLMs, with around 70% attack success rate. We will release CPAD to encourage further studies on prompt attack and defense.

相關內容

We consider the problem of estimating the parameters of a Markov Random Field with hard-constraints using a single sample. As our main running examples, we use the $k$-SAT and the proper coloring models, as well as general $H$-coloring models; for all of these we obtain both positive and negative results. In contrast to the soft-constrained case, we show in particular that single-sample estimation is not always possible, and that the existence of an estimator is related to the existence of non-satisfiable instances. Our algorithms are based on the pseudo-likelihood estimator. We show variance bounds for this estimator using coupling techniques inspired, in the case of $k$-SAT, by Moitra's sampling algorithm (JACM, 2019); our positive results for colorings build on this new coupling approach. For $q$-colorings on graphs with maximum degree $d$, we give a linear-time estimator when $q>d+1$, whereas the problem is non-identifiable when $q\leq d+1$. For general $H$-colorings, we show that standard conditions that guarantee sampling, such as Dobrushin's condition, are insufficient for one-sample learning; on the positive side, we provide a general condition that is sufficient to guarantee linear-time learning and obtain applications for proper colorings and permissive models. For the $k$-SAT model on formulas with maximum degree $d$, we provide a linear-time estimator when $k\gtrsim 6.45\log d$, whereas the problem becomes non-identifiable when $k\lesssim \log d$.

Recent neural compression methods have been based on the popular hyperprior framework. It relies on Scalar Quantization and offers a very strong compression performance. This contrasts from recent advances in image generation and representation learning, where Vector Quantization is more commonly employed. In this work, we attempt to bring these lines of research closer by revisiting vector quantization for image compression. We build upon the VQ-VAE framework and introduce several modifications. First, we replace the vanilla vector quantizer by a product quantizer. This intermediate solution between vector and scalar quantization allows for a much wider set of rate-distortion points: It implicitly defines high-quality quantizers that would otherwise require intractably large codebooks. Second, inspired by the success of Masked Image Modeling (MIM) in the context of self-supervised learning and generative image models, we propose a novel conditional entropy model which improves entropy coding by modelling the co-dependencies of the quantized latent codes. The resulting PQ-MIM model is surprisingly effective: its compression performance on par with recent hyperprior methods. It also outperforms HiFiC in terms of FID and KID metrics when optimized with perceptual losses (e.g. adversarial). Finally, since PQ-MIM is compatible with image generation frameworks, we show qualitatively that it can operate under a hybrid mode between compression and generation, with no further training or finetuning. As a result, we explore the extreme compression regime where an image is compressed into 200 bytes, i.e., less than a tweet.

Here we introduce an improved approach to Variational Quantum Attack Algorithms (VQAA) on crytographic protocols. Our methods provide robust quantum attacks to well-known cryptographic algorithms, more efficiently and with remarkably fewer qubits than previous approaches. We implement simulations of our attacks for symmetric-key protocols such as S-DES, S-AES and Blowfish. For instance, we show how our attack allows a classical simulation of a small 8-qubit quantum computer to find the secret key of one 32-bit Blowfish instance with 24 times fewer number of iterations than a brute-force attack. Our work also shows improvements in attack success rates for lightweight ciphers such as S-DES and S-AES. Further applications beyond symmetric-key cryptography are also discussed, including asymmetric-key protocols and hash functions. In addition, we also comment on potential future improvements of our methods. Our results bring one step closer assessing the vulnerability of large-size classical cryptographic protocols with Noisy Intermediate-Scale Quantum (NISQ) devices, and set the stage for future research in quantum cybersecurity.

Current practices regarding data collection for natural language processing on Amazon Mechanical Turk (MTurk) often rely on a combination of studies on data quality and heuristics shared among NLP researchers. However, without considering the perspectives of MTurk workers, these approaches are susceptible to issues regarding workers' rights and poor response quality. We conducted a critical literature review and a survey of MTurk workers aimed at addressing open questions regarding best practices for fair payment, worker privacy, data quality, and considering worker incentives. We found that worker preferences are often at odds with received wisdom among NLP researchers. Surveyed workers preferred reliable, reasonable payments over uncertain, very high payments; reported frequently lying on demographic questions; and expressed frustration at having work rejected with no explanation. We also found that workers view some quality control methods, such as requiring minimum response times or Master's qualifications, as biased and largely ineffective. Based on the survey results, we provide recommendations on how future NLP studies may better account for MTurk workers' experiences in order to respect workers' rights and improve data quality.

Successfully training Physics Informed Neural Networks (PINNs) for highly nonlinear PDEs on complex 3D domains remains a challenging task. In this paper, PINNs are employed to solve the 3D incompressible Navier-Stokes (NS) equations at moderate to high Reynolds numbers for complex geometries. The presented method utilizes very sparsely distributed solution data in the domain. A detailed investigation on the effect of the amount of supplied data and the PDE-based regularizers is presented. Additionally, a hybrid data-PINNs approach is used to generate a surrogate model of a realistic flow-thermal electronics design problem. This surrogate model provides near real-time sampling and was found to outperform standard data-driven neural networks when tested on unseen query points. The findings of the paper show how PINNs can be effective when used in conjunction with sparse data for solving 3D nonlinear PDEs or for surrogate modeling of design spaces governed by them.

Various first order approaches have been proposed in the literature to solve Linear Programming (LP) problems, recently leading to practically efficient solvers for large-scale LPs. From a theoretical perspective, linear convergence rates have been established for first order LP algorithms, despite the fact that the underlying formulations are not strongly convex. However, the convergence rate typically depends on the Hoffman constant of a large matrix that contains the constraint matrix, as well as the right hand side, cost, and capacity vectors. We introduce a first order approach for LP optimization with a convergence rate depending polynomially on the circuit imbalance measure, which is a geometric parameter of the constraint matrix, and depending logarithmically on the right hand side, capacity, and cost vectors. This provides much stronger convergence guarantees. For example, if the constraint matrix is totally unimodular, we obtain polynomial-time algorithms, whereas the convergence guarantees for approaches based on primal-dual formulations may have arbitrarily slow convergence rates for this class. Our approach is based on a fast gradient method due to Necoara, Nesterov, and Glineur (Math. Prog. 2019); this algorithm is called repeatedly in a framework that gradually fixes variables to the boundary. This technique is based on a new approximate version of Tardos's method, that was used to obtain a strongly polynomial algorithm for combinatorial LPs (Oper. Res. 1986).

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司