Reliability sensitivity analysis is concerned with measuring the influence of a system's uncertain input parameters on its probability of failure. Statistically dependent inputs present a challenge in both computing and interpreting these sensitivity indices; such dependencies require discerning between variable interactions produced by the probabilistic model describing the system inputs and the computational model describing the system itself. To accomplish such a separation of effects in the context of reliability sensitivity analysis we extend on an idea originally proposed by Mara and Tarantola (2012) for model outputs unrelated to rare events. We compute the independent (influence via computational model) and full (influence via both computational and probabilistic model) contributions of all inputs to the variance of the indicator function of the rare event. We compute this full set of variance-based sensitivity indices of the rare event indicator using a single set of failure samples. This is possible by considering $d$ different hierarchically structured isoprobabilistic transformations of this set of failure samples from the original $d$-dimensional space of dependent inputs to standard-normal space. The approach facilitates computing the full set of variance-based reliability sensitivity indices with a single set of failure samples obtained as the byproduct of a single run of a sample-based rare event estimation method. That is, no additional evaluations of the computational model are required. We demonstrate the approach on a test function and two engineering problems.
This work studies how the choice of the representation for parametric, spatially distributed inputs to elliptic partial differential equations (PDEs) affects the efficiency of a polynomial surrogate, based on Taylor expansion, for the parameter-to-solution map. In particular, we show potential advantages of representations using functions with localized supports. As model problem, we consider the steady-state diffusion equation, where the diffusion coefficient and right-hand side depend smoothly but potentially in a \textsl{highly nonlinear} way on a parameter $y\in [-1,1]^{\mathbb{N}}$. Following previous work for affine parameter dependence and for the lognormal case, we use pointwise instead of norm-wise bounds to prove $\ell^p$-summability of the Taylor coefficients of the solution. As application, we consider surrogates for solutions to elliptic PDEs on parametric domains. Using a mapping to a nominal configuration, this case fits in the general framework, and higher convergence rates can be attained when modeling the parametric boundary via spatially localized functions. The theoretical results are supported by numerical experiments for the parametric domain problem, illustrating the efficiency of the proposed approach and providing further insight on numerical aspects. Although the methods and ideas are carried out for the steady-state diffusion equation, they extend easily to other elliptic and parabolic PDEs.
The purpose of the paper is to provide a characterization of the error of the best polynomial approximation of composite functions in weighted spaces. Such a characterization is essential for the convergence analysis of numerical methods applied to non-linear problems or for numerical approaches that make use of regularization techniques to cure low smoothness of the solution. This result is obtained through an estimate of the derivatives of composite functions in weighted uniform norm.
We present a robust deep incremental learning framework for regression tasks on financial temporal tabular datasets which is built upon the incremental use of commonly available tabular and time series prediction models to adapt to distributional shifts typical of financial datasets. The framework uses a simple basic building block (decision trees) to build self-similar models of any required complexity to deliver robust performance under adverse situations such as regime changes, fat-tailed distributions, and low signal-to-noise ratios. As a detailed study, we demonstrate our scheme using XGBoost models trained on the Numerai dataset and show that a two layer deep ensemble of XGBoost models over different model snapshots delivers high quality predictions under different market regimes. We also show that the performance of XGBoost models with different number of boosting rounds in three scenarios (small, standard and large) is monotonically increasing with respect to model size and converges towards the generalisation upper bound. We also evaluate the robustness of the model under variability of different hyperparameters, such as model complexity and data sampling settings. Our model has low hardware requirements as no specialised neural architectures are used and each base model can be independently trained in parallel.
It is desirable for statistical models to detect signals of interest independently of their position. If the data is generated by some smooth process, this additional structure should be taken into account. We introduce a new class of neural networks that are shift invariant and preserve smoothness of the data: functional neural networks (FNNs). For this, we use methods from functional data analysis (FDA) to extend multi-layer perceptrons and convolutional neural networks to functional data. We propose different model architectures, show that the models outperform a benchmark model from FDA in terms of accuracy and successfully use FNNs to classify electroencephalography (EEG) data.
Stochastic inverse problems are typically encountered when it is wanted to quantify the uncertainty affecting the inputs of computer models. They consist in estimating input distributions from noisy, observable outputs, and such problems are increasingly examined in Bayesian contexts where the targeted inputs are affected by stochastic uncertainties. In this regard, a stochastic input can be qualified as meaningful if it explains most of the output uncertainty. While such inverse problems are characterized by identifiability conditions, constraints of "signal to noise", that can formalize this meaningfulness, should be accounted for within the definition of the model, prior to inference. This article investigates the possibility of forcing a solution to be meaningful in the context of parametric uncertainty quantification, through the tools of global sensitivity analysis and information theory (variance, entropy, Fisher information). Such forcings have mainly the nature of constraints placed on the input covariance, and can be made explicit by considering linear or linearizable models. Simulated experiments indicate that, when injected into the modeling process, these constraints can limit the influence of measurement or process noise on the estimation of the input distribution, and let hope for future extensions in a full non-linear framework, for example through the use of linear Gaussian mixtures.
This work puts forth low-complexity Riemannian subspace descent algorithms for the minimization of functions over the symmetric positive definite (SPD) manifold. Different from the existing Riemannian gradient descent variants, the proposed approach utilizes carefully chosen subspaces that allow the update to be written as a product of the Cholesky factor of the iterate and a sparse matrix. The resulting updates avoid the costly matrix operations like matrix exponentiation and dense matrix multiplication, which are generally required in almost all other Riemannian optimization algorithms on SPD manifold. We further identify a broad class of functions, arising in diverse applications, such as kernel matrix learning, covariance estimation of Gaussian distributions, maximum likelihood parameter estimation of elliptically contoured distributions, and parameter estimation in Gaussian mixture model problems, over which the Riemannian gradients can be calculated efficiently. The proposed uni-directional and multi-directional Riemannian subspace descent variants incur per-iteration complexities of $\mathcal{O}(n)$ and $\mathcal{O}(n^2)$ respectively, as compared to the $\mathcal{O}(n^3)$ or higher complexity incurred by all existing Riemannian gradient descent variants. The superior runtime and low per-iteration complexity of the proposed algorithms is also demonstrated via numerical tests on large-scale covariance estimation problems.
We develop a data-driven optimal shrinkage algorithm for matrix denoising in the presence of high-dimensional noise with a separable covariance structure; that is, the noise is colored and dependent across samples. The algorithm, coined {\em extended OptShrink} (eOptShrink) depends on the asymptotic behavior of singular values and singular vectors of the random matrix associated with the noisy data. Based on the developed theory, including the sticking property of non-outlier singular values and delocalization of the non-outlier singular vectors associated with weak signals with a convergence rate, and the spectral behavior of outlier singular values and vectors, we develop three estimators, each of these has its own interest. First, we design a novel rank estimator, based on which we provide an estimator for the spectral distribution of the pure noise matrix, and hence the optimal shrinker called eOptShrink. In this algorithm we do not need to estimate the separable covariance structure of the noise. A theoretical guarantee of these estimators with a convergence rate is given. On the application side, in addition to a series of numerical simulations with a comparison with various state-of-the-art optimal shrinkage algorithms, we apply eOptShrink to extract maternal and fetal electrocardiograms from the single channel trans-abdominal maternal electrocardiogram.
A variant of the standard notion of branching bisimilarity for processes with discrete relative timing is proposed which is coarser than the standard notion. Using a version of ACP (Algebra of Communicating Processes) with abstraction for processes with discrete relative timing, it is shown that the proposed variant allows of both the functional correctness and the performance properties of the PAR (Positive Acknowledgement with Retransmission) protocol to be analyzed. In the version of ACP concerned, the difference between the standard notion of branching bisimilarity and its proposed variant is characterized by a single axiom schema.
Linear statistics of point processes yield Monte Carlo estimators of integrals. While the simplest approach relies on a homogeneous Poisson point process, more regularly spread point processes, such as scrambled low-discrepancy sequences or determinantal point processes, can yield Monte Carlo estimators with fast-decaying mean square error. Following the intuition that more regular configurations result in lower integration error, we introduce the repulsion operator, which reduces clustering by slightly pushing the points of a configuration away from each other. Our main theoretical result is that applying the repulsion operator to a homogeneous Poisson point process yields an unbiased Monte Carlo estimator with lower variance than under the original point process. On the computational side, the evaluation of our estimator is only quadratic in the number of integrand evaluations and can be easily parallelized without any communication across tasks. We illustrate our variance reduction result with numerical experiments and compare it to popular Monte Carlo methods. Finally, we numerically investigate a few open questions on the repulsion operator. In particular, the experiments suggest that the variance reduction also holds when the operator is applied to other motion-invariant point processes.
We consider an unknown multivariate function representing a system-such as a complex numerical simulator-taking both deterministic and uncertain inputs. Our objective is to estimate the set of deterministic inputs leading to outputs whose probability (with respect to the distribution of the uncertain inputs) of belonging to a given set is less than a given threshold. This problem, which we call Quantile Set Inversion (QSI), occurs for instance in the context of robust (reliability-based) optimization problems, when looking for the set of solutions that satisfy the constraints with sufficiently large probability. To solve the QSI problem, we propose a Bayesian strategy based on Gaussian process modeling and the Stepwise Uncertainty Reduction (SUR) principle, to sequentially choose the points at which the function should be evaluated to efficiently approximate the set of interest. We illustrate the performance and interest of the proposed SUR strategy through several numerical experiments.