Guided trajectory planning involves a leader robot strategically directing a follower robot to collaboratively reach a designated destination. However, this task becomes notably challenging when the leader lacks complete knowledge of the follower's decision-making model. There is a need for learning-based methods to effectively design the cooperative plan. To this end, we develop a Stackelberg game-theoretic approach based on the Koopman operator to address the challenge. We first formulate the guided trajectory planning problem through the lens of a dynamic Stackelberg game. We then leverage Koopman operator theory to acquire a learning-based linear system model that approximates the follower's feedback dynamics. Based on this learned model, the leader devises a collision-free trajectory to guide the follower using receding horizon planning. We use simulations to elaborate on the effectiveness of our approach in generating learning models that accurately predict the follower's multi-step behavior when compared to alternative learning techniques. Moreover, our approach successfully accomplishes the guidance task and notably reduces the leader's planning time to nearly half when contrasted with the model-based baseline method.
Designing tests to evaluate if a given autonomous system satisfies complex specifications is challenging due to the complexity of these systems. This work proposes a flow-based approach for reactive test synthesis from temporal logic specifications, enabling the synthesis of test environments consisting of static and reactive obstacles and dynamic test agents. The temporal logic specifications describe desired test behavior, including system requirements as well as a test objective that is not revealed to the system. The synthesized test strategy places restrictions on system actions in reaction to the system state. The tests are minimally restrictive and accomplish the test objective while ensuring realizability of the system's objective without aiding it (semi-cooperative setting). Automata theory and flow networks are leveraged to formulate a mixed-integer linear program (MILP) to synthesize the test strategy. For a dynamic test agent, the agent strategy is synthesized for a GR(1) specification constructed from the solution of the MILP. If the specification is unrealizable by the dynamics of the test agent, a counterexample-guided approach is used to resolve the MILP until a strategy is found. This flow-based, reactive test synthesis is conducted offline and is agnostic to the system controller. Finally, the resulting test strategy is demonstrated in simulation and experimentally on a pair of quadrupedal robots for a variety of specifications.
Medical image processing usually requires a model trained with carefully crafted datasets due to unique image characteristics and domain-specific challenges, especially in pathology. Primitive detection and segmentation in digitized tissue samples are essential for objective and automated diagnosis and prognosis of cancer. SAM (Segment Anything Model) has recently been developed to segment general objects from natural images with high accuracy, but it requires human prompts to generate masks. In this work, we present a novel approach that adapts pre-trained natural image encoders of SAM for detection-based region proposals. Regions proposed by a pre-trained encoder are sent to cascaded feature propagation layers for projection. Then, local semantic and global context is aggregated from multi-scale for bounding box localization and classification. Finally, the SAM decoder uses the identified bounding boxes as essential prompts to generate a comprehensive primitive segmentation map. The entire base framework, SAM, requires no additional training or fine-tuning but could produce an end-to-end result for two fundamental segmentation tasks in pathology. Our method compares with state-of-the-art models in F1 score for nuclei detection and binary/multiclass panoptic(bPQ/mPQ) and mask quality(dice) for segmentation quality on the PanNuke dataset while offering end-to-end efficiency. Our model also achieves remarkable Average Precision (+4.5%) on the secondary dataset (HuBMAP Kidney) compared to Faster RCNN. The code is publicly available at //github.com/learner-codec/autoprom_sam.
Complex multi-objective missions require the coordination of heterogeneous robots at multiple inter-connected levels, such as coalition formation, scheduling, and motion planning. The associated challenges are exacerbated when solutions to these interconnected problems need to both maximize task performance and respect practical constraints on time and resources. In this work, we formulate a new class of spatio-temporal heterogeneous task allocation problems that consider these complexities. We contribute a novel framework, named Quality-Optimized Incremental Task Allocation Graph Search (Q-ITAGS), to solve such problems. Q-ITAGS builds upon our prior work in trait-based coordination and offers a flexible interleaved framework that i) explicitly models and optimizes the effect of collective capabilities on task performance via learnable trait-quality maps, and ii) respects both resource constraints and spatio-temporal constraints, including a user-specified time budget (i.e., maximum makespan). In addition to algorithmic contributions, we derive theoretical suboptimality bounds in terms of task performance that varies as a function of a single hyperparameter. Our detailed experiments involving a simulated emergency response task and a real-world video game dataset reveal that i) Q-ITAGS results in superior team performance compared to a state-of-the-art method, while also respecting complex spatio-temporal and resource constraints, ii) Q-ITAGS efficiently learns trait-quality maps to enable effective trade-off between task performance and resource constraints, and iii) Q-ITAGS' suboptimality bounds consistently hold in practice.
The receiver design for multi-input multi-output (MIMO) ultra-reliable and low-latency communication (URLLC) systems can be a tough task due to the use of short channel codes and few pilot symbols. Consequently, error propagation can occur in traditional turbo receivers, leading to performance degradation. Moreover, the processing delay induced by information exchange between different modules may also be undesirable for URLLC. To address the issues, we advocate to perform joint channel estimation, detection, and decoding (JCDD) for MIMO URLLC systems encoded by short low-density parity-check (LDPC) codes. Specifically, we develop two novel JCDD problem formulations based on the maximum a posteriori (MAP) criterion for Gaussian MIMO channels and sparse mmWave MIMO channels, respectively, which integrate the pilots, the bit-to-symbol mapping, the LDPC code constraints, as well as the channel statistical information. Both the challenging large-scale non-convex problems are then solved based on the alternating direction method of multipliers (ADMM) algorithms, where closed-form solutions are achieved in each ADMM iteration. Furthermore, two JCDD neural networks, called JCDDNet-G and JCDDNet-S, are built by unfolding the derived ADMM algorithms and introducing trainable parameters. It is interesting to find via simulations that the proposed trainable JCDD receivers can outperform the turbo receivers with affordable computational complexities.
This article presents a deep reinforcement learning-based approach to tackle a persistent surveillance mission requiring a single unmanned aerial vehicle initially stationed at a depot with fuel or time-of-flight constraints to repeatedly visit a set of targets with equal priority. Owing to the vehicle's fuel or time-of-flight constraints, the vehicle must be regularly refueled, or its battery must be recharged at the depot. The objective of the problem is to determine an optimal sequence of visits to the targets that minimizes the maximum time elapsed between successive visits to any target while ensuring that the vehicle never runs out of fuel or charge. We present a deep reinforcement learning algorithm to solve this problem and present the results of numerical experiments that corroborate the effectiveness of this approach in comparison with common-sense greedy heuristics.
Collaborative filtering (CF) is an essential technique in recommender systems that provides personalized recommendations by only leveraging user-item interactions. However, most CF methods represent users and items as fixed points in the latent space, lacking the ability to capture uncertainty. In this paper, we propose a novel approach, called the Wasserstein dependent Graph ATtention network (W-GAT), for collaborative filtering with uncertainty. We utilize graph attention network and Wasserstein distance to address the limitations of LightGCN and Kullback-Leibler divergence (KL) divergence to learn Gaussian embedding for each user and item. Additionally, our method incorporates Wasserstein-dependent mutual information further to increase the similarity between positive pairs and to tackle the challenges induced by KL divergence. Experimental results on three benchmark datasets show the superiority of W-GAT compared to several representative baselines. Extensive experimental analysis validates the effectiveness of W-GAT in capturing uncertainty by modeling the range of user preferences and categories associated with items.
While advances continue to be made in model-based clustering, challenges persist in modeling various data types such as panel data. Multivariate panel data present difficulties for clustering algorithms due to the unique correlation structure, a consequence of taking observations on several subjects over multiple time points. Additionally, panel data are often plagued by missing data and dropouts, presenting issues for estimation algorithms. This research presents a family of hidden Markov models that compensate for the unique correlation structures that arise in panel data. A modified expectation-maximization algorithm capable of handling missing not at random data and dropout is presented and used to perform model estimation.
Artificial intelligence (AI) models introduce privacy vulnerabilities to systems. These vulnerabilities may impact model owners or system users; they exist during model development, deployment, and inference phases, and threats can be internal or external to the system. In this paper, we investigate potential threats and propose the use of several privacy-enhancing technologies (PETs) to defend AI-enabled systems. We then provide a framework for PETs evaluation for a AI-enabled systems and discuss the impact PETs may have on system-level variables.
For decades, robotics researchers have pursued various tasks for multi-robot systems, from cooperative manipulation to search and rescue. These tasks are multi-robot extensions of classical robotic tasks and often optimized on dimensions such as speed or efficiency. As robots transition from commercial and research settings into everyday environments, social task aims such as engagement or entertainment become increasingly relevant. This work presents a compelling multi-robot task, in which the main aim is to enthrall and interest. In this task, the goal is for a human to be drawn to move alongside and participate in a dynamic, expressive robot flock. Towards this aim, the research team created algorithms for robot movements and engaging interaction modes such as gestures and sound. The contributions are as follows: (1) a novel group navigation algorithm involving human and robot agents, (2) a gesture responsive algorithm for real-time, human-robot flocking interaction, (3) a weight mode characterization system for modifying flocking behavior, and (4) a method of encoding a choreographer's preferences inside a dynamic, adaptive, learned system. An experiment was performed to understand individual human behavior while interacting with the flock under three conditions: weight modes selected by a human choreographer, a learned model, or subset list. Results from the experiment showed that the perception of the experience was not influenced by the weight mode selection. This work elucidates how differing task aims such as engagement manifest in multi-robot system design and execution, and broadens the domain of multi-robot tasks.
Hyperspectral (HS) imaging presents itself as a non-contact, non-ionizing and non-invasive technique, proven to be suitable for medical diagnosis. However, the volume of information contained in these images makes difficult providing the surgeon with information about the boundaries in real-time. To that end, High-Performance-Computing (HPC) platforms become necessary. This paper presents a comparison between the performances provided by five different HPC platforms while processing a spatial-spectral approach to classify HS images, assessing their main benefits and drawbacks. To provide a complete study, two different medical applications, with two different requirements, have been analyzed. The first application consists of HS images taken from neurosurgical operations; the second one presents HS images taken from dermatological interventions. While the main constraint for neurosurgical applications is the processing time, in other environments, as the dermatological one, other requirements can be considered. In that sense, energy efficiency is becoming a major challenge, since this kind of applications are usually developed as hand-held devices, thus depending on the battery capacity. These requirements have been considered to choose the target platforms: on the one hand, three of the most powerful Graphic Processing Units (GPUs) available in the market; and, on the other hand, a low-power GPU and a manycore architecture, both specifically thought for being used in battery-dependent environments.