亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Context: Static analyses are well-established to aid in understanding bugs or vulnerabilities during the development process or in large-scale studies. A low false-positive rate is essential for the adaption in practice and for precise results of empirical studies. Unfortunately, static analyses tend to report where a vulnerability manifests rather than the fix location. This can cause presumed false positives or imprecise results. Method: To address this problem, we designed an adaption of an existing static analysis algorithm that can distinguish between a manifestation and fix location, and reports error chains. An error chain represents at least two interconnected errors that occur successively, thus building the connection between the fix and manifestation location. We used our tool CogniCryptSUBS for a case study on 471 GitHub repositories, a performance benchmark to compare different analysis configurations, and conducted an expert interview. Result: We found that 50 % of the projects with a report had at least one error chain. Our runtime benchmark demonstrated that our improvement caused only a minimal runtime overhead of less than 4 %. The results of our expert interview indicate that with our adapted version participants require fewer executions of the analysis. Conclusion: Our results indicate that error chains occur frequently in real-world projects, and ignoring them can lead to imprecise evaluation results. The runtime benchmark indicates that our tool is a feasible and efficient solution for detecting error chains in real-world projects. Further, our results gave a hint that the usability of static analyses may benefit from supporting error chains.

相關內容

Recognizing characters and predicting speakers of dialogue are critical for comic processing tasks, such as voice generation or translation. However, because characters vary by comic title, supervised learning approaches like training character classifiers which require specific annotations for each comic title are infeasible. This motivates us to propose a novel zero-shot approach, allowing machines to identify characters and predict speaker names based solely on unannotated comic images. In spite of their importance in real-world applications, these task have largely remained unexplored due to challenges in story comprehension and multimodal integration. Recent large language models (LLMs) have shown great capability for text understanding and reasoning, while their application to multimodal content analysis is still an open problem. To address this problem, we propose an iterative multimodal framework, the first to employ multimodal information for both character identification and speaker prediction tasks. Our experiments demonstrate the effectiveness of the proposed framework, establishing a robust baseline for these tasks. Furthermore, since our method requires no training data or annotations, it can be used as-is on any comic series.

Optimizing static risk-averse objectives in Markov decision processes is difficult because they do not admit standard dynamic programming equations common in Reinforcement Learning (RL) algorithms. Dynamic programming decompositions that augment the state space with discrete risk levels have recently gained popularity in the RL community. Prior work has shown that these decompositions are optimal when the risk level is discretized sufficiently. However, we show that these popular decompositions for Conditional-Value-at-Risk (CVaR) and Entropic-Value-at-Risk (EVaR) are inherently suboptimal regardless of the discretization level. In particular, we show that a saddle point property assumed to hold in prior literature may be violated. However, a decomposition does hold for Value-at-Risk and our proof demonstrates how this risk measure differs from CVaR and EVaR. Our findings are significant because risk-averse algorithms are used in high-stake environments, making their correctness much more critical.

We introduce a novel modeling approach for time series imputation and forecasting, tailored to address the challenges often encountered in real-world data, such as irregular samples, missing data, or unaligned measurements from multiple sensors. Our method relies on a continuous-time-dependent model of the series' evolution dynamics. It leverages adaptations of conditional, implicit neural representations for sequential data. A modulation mechanism, driven by a meta-learning algorithm, allows adaptation to unseen samples and extrapolation beyond observed time-windows for long-term predictions. The model provides a highly flexible and unified framework for imputation and forecasting tasks across a wide range of challenging scenarios. It achieves state-of-the-art performance on classical benchmarks and outperforms alternative time-continuous models.

In response to the critical need for effective reconnaissance in disaster scenarios, this research article presents the design and implementation of a complete autonomous robot system using the Turtlebot3 with Robotic Operating System (ROS) Noetic. Upon deployment in closed, initially unknown environments, the system aims to generate a comprehensive map and identify any present 'victims' using AprilTags as stand-ins. We discuss our solution for search and rescue missions, while additionally exploring more advanced algorithms to improve search and rescue functionalities. We introduce a Cubature Kalman Filter to help reduce the mean squared error [m] for AprilTag localization and an information-theoretic exploration algorithm to expedite exploration in unknown environments. Just like turtles, our system takes it slow and steady, but when it's time to save the day, it moves at ninja-like speed! Despite Donatello's shell, he's no slowpoke - he zips through obstacles with the agility of a teenage mutant ninja turtle. So, hang on tight to your shells and get ready for a whirlwind of reconnaissance! Full pipeline code //github.com/rzhao5659/MRProject/tree/main Exploration code //github.com/rzhao5659/MRProject/tree/main

Large language models (LLMs) have shown impressive effectiveness in various software engineering tasks, including automated program repair (APR). In this study, we take a deep dive into automated bug fixing utilizing LLMs. In contrast to many deep learning-based APR methods that assume known bug locations, rely on line-level localization tools, or address bug prediction and fixing in one step, our approach uniquely employs LLMs to predict bug location at the token level and subsequently utilizes them for bug fixing. This methodological separation of bug localization and fixing using different LLMs enables effective integration of diverse contextual information and improved incorporation of inductive biases. We introduce Toggle: Token-Granulated Bug Localization and Repair, a comprehensive program repair framework that integrates a bug localization model, an adjustment unit, and a bug-fixing model. Toggle takes a buggy function as input and generates a complete corrected function. We investigate various styles of prompting to the bug fixing model to identify the most effective prompts that better utilize the inductive bias and significantly outperform others. Toggle achieves the new state-of-the-art (SOTA) performance on the CodeXGLUE code refinement benchmark, and exhibits better and comparable performance on several other widely-used APR datasets, including Defects4J.

Voice based applications are ruling over the era of automation because speech has a lot of factors that determine a speakers information as well as speech. Modern Automatic Speech Recognition (ASR) is a blessing in the field of Human-Computer Interaction (HCI) for efficient communication among humans and devices using Artificial Intelligence technology. Speech is one of the easiest mediums of communication because it has a lot of identical features for different speakers. Nowadays it is possible to determine speakers and their identity using their speech in terms of speaker recognition. In this paper, we presented a method that will provide a speakers geographical identity in a certain region using continuous Bengali speech. We consider eight different divisions of Bangladesh as the geographical region. We applied the Mel Frequency Cepstral Coefficient (MFCC) and Delta features on an Artificial Neural Network to classify speakers division. We performed some preprocessing tasks like noise reduction and 8-10 second segmentation of raw audio before feature extraction. We used our dataset of more than 45 hours of audio data from 633 individual male and female speakers. We recorded the highest accuracy of 85.44%.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

AI recommender systems are sought for decision support by providing suggestions to operators responsible for making final decisions. However, these systems are typically considered black boxes, and are often presented without any context or insight into the underlying algorithm. As a result, recommender systems can lead to miscalibrated user reliance and decreased situation awareness. Recent work has focused on improving the transparency of recommender systems in various ways such as improving the recommender's analysis and visualization of the figures of merit, providing explanations for the recommender's decision, as well as improving user training or calibrating user trust. In this paper, we introduce an alternative transparency technique of structuring the order in which contextual information and the recommender's decision are shown to the human operator. This technique is designed to improve the operator's situation awareness and therefore the shared situation awareness between the operator and the recommender system. This paper presents the results of a two-phase between-subjects study in which participants and a recommender system jointly make a high-stakes decision. We varied the amount of contextual information the participant had, the assessment technique of the figures of merit, and the reliability of the recommender system. We found that providing contextual information upfront improves the team's shared situation awareness by improving the human decision maker's initial and final judgment, as well as their ability to discern the recommender's error boundary. Additionally, this technique accurately calibrated the human operator's trust in the recommender. This work proposes and validates a way to provide model-agnostic transparency into AI systems that can support the human decision maker and lead to improved team performance.

We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司